基于小波变换和 SIFT 特征的格子织物图像检索

Pengyu Zhao, Yuan Liu, Xiaoting Zhang
{"title":"基于小波变换和 SIFT 特征的格子织物图像检索","authors":"Pengyu Zhao, Yuan Liu, Xiaoting Zhang","doi":"10.1088/1742-6596/2833/1/012013","DOIUrl":null,"url":null,"abstract":"This study presents a method for plaid fabric image retrieval that combines wavelet and SIFT features to address the challenges of accuracy and efficiency in fabric retrieval due to diverse fabric types. The process starts with cropping plaid fabric images and applying histogram equalization to improve brightness and contrast. Texture is enhanced using the Sobel operator, and the Haar wavelet transform extracts image high-frequency components in various directions. Wavelet features are then derived through histogram statistics. The SIFT algorithm is utilized to describe local features by capturing key points and directional information. A codebook aggregates these features from the fabric database, and VLAD encoding generates a vector for the image features, which is further reduced to 256 dimensions via PCA. A similarity-weighted fusion method combines the wavelet and SIFT features, achieving an mAP of 0.67 and an average retrieval time of 1.1 seconds per image. This method significantly enhances plaid fabric retrieval, aiding in fabric design and production.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plaid Fabric Image Retrieval Based on Wavelet Transform and SIFT Features\",\"authors\":\"Pengyu Zhao, Yuan Liu, Xiaoting Zhang\",\"doi\":\"10.1088/1742-6596/2833/1/012013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a method for plaid fabric image retrieval that combines wavelet and SIFT features to address the challenges of accuracy and efficiency in fabric retrieval due to diverse fabric types. The process starts with cropping plaid fabric images and applying histogram equalization to improve brightness and contrast. Texture is enhanced using the Sobel operator, and the Haar wavelet transform extracts image high-frequency components in various directions. Wavelet features are then derived through histogram statistics. The SIFT algorithm is utilized to describe local features by capturing key points and directional information. A codebook aggregates these features from the fabric database, and VLAD encoding generates a vector for the image features, which is further reduced to 256 dimensions via PCA. A similarity-weighted fusion method combines the wavelet and SIFT features, achieving an mAP of 0.67 and an average retrieval time of 1.1 seconds per image. This method significantly enhances plaid fabric retrieval, aiding in fabric design and production.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2833/1/012013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2833/1/012013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合小波和 SIFT 特征的格子织物图像检索方法,以解决因织物类型不同而导致的织物检索准确性和效率方面的难题。该方法首先对格子织物图像进行裁剪,然后应用直方图均衡化来提高亮度和对比度。使用 Sobel 算子增强纹理,然后使用 Haar 小波变换提取不同方向的图像高频成分。然后通过直方图统计得出小波特征。SIFT 算法通过捕捉关键点和方向信息来描述局部特征。代码集汇总了织物数据库中的这些特征,VLAD 编码生成了图像特征向量,并通过 PCA 将其进一步缩减到 256 维。相似性加权融合方法结合了小波和 SIFT 特征,mAP 达到 0.67,每幅图像的平均检索时间为 1.1 秒。这种方法大大提高了格子织物的检索能力,有助于织物的设计和生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plaid Fabric Image Retrieval Based on Wavelet Transform and SIFT Features
This study presents a method for plaid fabric image retrieval that combines wavelet and SIFT features to address the challenges of accuracy and efficiency in fabric retrieval due to diverse fabric types. The process starts with cropping plaid fabric images and applying histogram equalization to improve brightness and contrast. Texture is enhanced using the Sobel operator, and the Haar wavelet transform extracts image high-frequency components in various directions. Wavelet features are then derived through histogram statistics. The SIFT algorithm is utilized to describe local features by capturing key points and directional information. A codebook aggregates these features from the fabric database, and VLAD encoding generates a vector for the image features, which is further reduced to 256 dimensions via PCA. A similarity-weighted fusion method combines the wavelet and SIFT features, achieving an mAP of 0.67 and an average retrieval time of 1.1 seconds per image. This method significantly enhances plaid fabric retrieval, aiding in fabric design and production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信