Shilin Li, Yuxin Wang, Kun Tang, Han Guo, Yifan Guo, Long You, Zhi Lu and Guangxin Wang
{"title":"制备镍锰双金属氢氧化物纳米片以增强氧进化反应的电催化性能","authors":"Shilin Li, Yuxin Wang, Kun Tang, Han Guo, Yifan Guo, Long You, Zhi Lu and Guangxin Wang","doi":"10.1088/1742-6596/2838/1/012002","DOIUrl":null,"url":null,"abstract":"This paper uses a common one-step hydrothermal method to prepare NiMn-LDH/NF (Layered Double Hydroxide, LDH) oxygen evolution catalyst with outstanding performance. The NiMn-LDH grows into a nanosheet array structure on nickel foam (NF) and it has a big surface area and exceptional ion transport function that could accelerate the diffusion rate of electrocatalytic products. It attempted to modulate the molar proportion of Ni and Mn to explore the oxygen evolution reaction (OER) performance of the NiMn-LDH/NF catalysts. It was found that when Ni:Mn=4:1 (molar ratio, hereinafter), the nanosheets grew more densely and had better OER performance and stability. The electrochemical test results show that the Ni4Mn-LDH/NF catalyst exhibits an overvoltage of 341 mV at a current density of 10 mA cm−2, and the Tafel slope is only 98.99 mV dec−1.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of nickel-manganese based bimetallic hydroxide nanosheets for enhanced electrocatalytic oxygen evolution reaction\",\"authors\":\"Shilin Li, Yuxin Wang, Kun Tang, Han Guo, Yifan Guo, Long You, Zhi Lu and Guangxin Wang\",\"doi\":\"10.1088/1742-6596/2838/1/012002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses a common one-step hydrothermal method to prepare NiMn-LDH/NF (Layered Double Hydroxide, LDH) oxygen evolution catalyst with outstanding performance. The NiMn-LDH grows into a nanosheet array structure on nickel foam (NF) and it has a big surface area and exceptional ion transport function that could accelerate the diffusion rate of electrocatalytic products. It attempted to modulate the molar proportion of Ni and Mn to explore the oxygen evolution reaction (OER) performance of the NiMn-LDH/NF catalysts. It was found that when Ni:Mn=4:1 (molar ratio, hereinafter), the nanosheets grew more densely and had better OER performance and stability. The electrochemical test results show that the Ni4Mn-LDH/NF catalyst exhibits an overvoltage of 341 mV at a current density of 10 mA cm−2, and the Tafel slope is only 98.99 mV dec−1.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2838/1/012002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2838/1/012002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文采用常见的一步水热法制备了性能优异的镍锰-LDH/NF(层状双氢氧化物,LDH)氧进化催化剂。镍锰-LDH在泡沫镍(NF)上生长成纳米片阵列结构,具有较大的比表面积和优异的离子传输功能,可加快电催化产物的扩散速度。研究人员试图通过调节镍和锰的摩尔比例来探索镍锰-LDH/NF 催化剂的氧进化反应(OER)性能。研究发现,当 Ni:Mn=4:1(摩尔比,下同)时,纳米片生长更致密,具有更好的 OER 性能和稳定性。电化学测试结果表明,在电流密度为 10 mA cm-2 时,Ni4Mn-LDH/NF 催化剂的过电压为 341 mV,塔菲尔斜率仅为 98.99 mV dec-1。
Preparation of nickel-manganese based bimetallic hydroxide nanosheets for enhanced electrocatalytic oxygen evolution reaction
This paper uses a common one-step hydrothermal method to prepare NiMn-LDH/NF (Layered Double Hydroxide, LDH) oxygen evolution catalyst with outstanding performance. The NiMn-LDH grows into a nanosheet array structure on nickel foam (NF) and it has a big surface area and exceptional ion transport function that could accelerate the diffusion rate of electrocatalytic products. It attempted to modulate the molar proportion of Ni and Mn to explore the oxygen evolution reaction (OER) performance of the NiMn-LDH/NF catalysts. It was found that when Ni:Mn=4:1 (molar ratio, hereinafter), the nanosheets grew more densely and had better OER performance and stability. The electrochemical test results show that the Ni4Mn-LDH/NF catalyst exhibits an overvoltage of 341 mV at a current density of 10 mA cm−2, and the Tafel slope is only 98.99 mV dec−1.