通过考奇特征演化的爱因斯坦-克莱因-戈登系统:记忆和环落尾的计算

Sizheng Ma, Kyle C. Nelli, Jordan Moxon, Mark A. Scheel, Nils Deppe, Lawrence E. Kidder, William Throwe, Nils L. Vu
{"title":"通过考奇特征演化的爱因斯坦-克莱因-戈登系统:记忆和环落尾的计算","authors":"Sizheng Ma, Kyle C. Nelli, Jordan Moxon, Mark A. Scheel, Nils Deppe, Lawrence E. Kidder, William Throwe, Nils L. Vu","doi":"arxiv-2409.06141","DOIUrl":null,"url":null,"abstract":"Cauchy-characteristic evolution (CCE) is a powerful method for accurately\nextracting gravitational waves at future null infinity. In this work, we extend\nthe previously implemented CCE system within the numerical relativity code\nSpECTRE by incorporating a scalar field. This allows the system to capture\nfeatures of beyond-general-relativity theories. We derive scalar contributions\nto the equations of motion, Weyl scalar computations, Bianchi identities, and\nbalance laws at future null infinity. Our algorithm, tested across various\nscenarios, accurately reveals memory effects induced by both scalar and tensor\nfields and captures Price's power-law tail ($u^{-l-2}$) in scalar fields at\nfuture null infinity, in contrast to the $t^{-2l-3}$ tail at future timelike\ninfinity.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Einstein-Klein-Gordon system via Cauchy-characteristic evolution: Computation of memory and ringdown tail\",\"authors\":\"Sizheng Ma, Kyle C. Nelli, Jordan Moxon, Mark A. Scheel, Nils Deppe, Lawrence E. Kidder, William Throwe, Nils L. Vu\",\"doi\":\"arxiv-2409.06141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cauchy-characteristic evolution (CCE) is a powerful method for accurately\\nextracting gravitational waves at future null infinity. In this work, we extend\\nthe previously implemented CCE system within the numerical relativity code\\nSpECTRE by incorporating a scalar field. This allows the system to capture\\nfeatures of beyond-general-relativity theories. We derive scalar contributions\\nto the equations of motion, Weyl scalar computations, Bianchi identities, and\\nbalance laws at future null infinity. Our algorithm, tested across various\\nscenarios, accurately reveals memory effects induced by both scalar and tensor\\nfields and captures Price's power-law tail ($u^{-l-2}$) in scalar fields at\\nfuture null infinity, in contrast to the $t^{-2l-3}$ tail at future timelike\\ninfinity.\",\"PeriodicalId\":501041,\"journal\":{\"name\":\"arXiv - PHYS - General Relativity and Quantum Cosmology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考奇特征演化(CCE)是在未来空无穷远处精确提取引力波的一种强大方法。在这项工作中,我们在数值相对论代码SpECTRE中扩展了先前实现的CCE系统,加入了一个标量场。这使得该系统能够捕捉到超越广义相对论的特征。我们推导了标量对运动方程的贡献、韦尔标量计算、比安奇等式以及未来空无穷远时的平衡定律。我们的算法在各种情况下都进行了测试,准确地揭示了标量场和张量场引起的记忆效应,并捕捉到了未来空无穷大时标量场中的普赖斯幂律尾部($u^{-l-2}$),而在未来类时间无穷大时则捕捉到了$t^{-2l-3}$尾部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Einstein-Klein-Gordon system via Cauchy-characteristic evolution: Computation of memory and ringdown tail
Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price's power-law tail ($u^{-l-2}$) in scalar fields at future null infinity, in contrast to the $t^{-2l-3}$ tail at future timelike infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信