作为闵科夫斯基空间、dS 空间和 AdS 空间不确定性原理基础的具有最小速度不变性的洛伦兹违反现象

Cláudio Nassif Cruz
{"title":"作为闵科夫斯基空间、dS 空间和 AdS 空间不确定性原理基础的具有最小速度不变性的洛伦兹违反现象","authors":"Cláudio Nassif Cruz","doi":"arxiv-2409.04925","DOIUrl":null,"url":null,"abstract":"This research aims to provide the geometrical foundation of the uncertainty\nprinciple within a new causal structure of spacetime so-called Symmetrical\nSpecial Relativity (SSR), where there emerges a Lorentz violation due to the\npresence of an invariant minimum speed $V$ related to the vacuum energy. SSR\npredicts that a dS-scenario occurs only for a certain regime of speeds $v$,\nwhere $v<v_0=\\sqrt{cV}$, which represents the negative gravitational potentials\n($\\Phi<0$) connected to the cosmological parameter $\\Lambda>0$. For $v=v_0$,\nMinkowski (pseudo-Euclidian) space is recovered for representing the flat space\n($\\Lambda=0$), and for $v>v_0$ ($\\Phi>0$), Anti-de Sitter (AdS) scenario\nprevails ($\\Lambda<0$). The fact that the current universe is flat as its\naverage density of matter distribution ($\\rho_m$ given for a slightly negative\ncurvature $R$) coincides with its vacuum energy density ($\\rho_{\\Lambda}$ given\nfor a slightly positive curvature $\\Lambda$), i.e., the {\\it cosmic coincidence\nproblem}, is now addressed by SSR. SSR provides its energy-momentum tensor of\nperfect fluid, leading to the EOS of vacuum ($p=-\\rho_{\\Lambda}$). Einstein\nequation for vacuum given by such SSR approach allows us to obtain\n$\\rho_{\\Lambda}$ associated with a scalar curvature $\\Lambda$, whereas the\nsolution of Einstein equation only in the presence of a homogeneous\ndistribution of matter $\\rho_m$ for the whole universe presents a scalar\ncurvature $R$, in such a way that the presence of the background field\n$\\Lambda$ opposes the Riemannian curvature $R$, thus leading to a current\neffective curvature $R_{eff}=R+\\Lambda\\approx 0$ according to observations.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lorentz violation with an invariant minimum speed as foundation of the uncertainty principle in Minkowski, dS and AdS spaces\",\"authors\":\"Cláudio Nassif Cruz\",\"doi\":\"arxiv-2409.04925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to provide the geometrical foundation of the uncertainty\\nprinciple within a new causal structure of spacetime so-called Symmetrical\\nSpecial Relativity (SSR), where there emerges a Lorentz violation due to the\\npresence of an invariant minimum speed $V$ related to the vacuum energy. SSR\\npredicts that a dS-scenario occurs only for a certain regime of speeds $v$,\\nwhere $v<v_0=\\\\sqrt{cV}$, which represents the negative gravitational potentials\\n($\\\\Phi<0$) connected to the cosmological parameter $\\\\Lambda>0$. For $v=v_0$,\\nMinkowski (pseudo-Euclidian) space is recovered for representing the flat space\\n($\\\\Lambda=0$), and for $v>v_0$ ($\\\\Phi>0$), Anti-de Sitter (AdS) scenario\\nprevails ($\\\\Lambda<0$). The fact that the current universe is flat as its\\naverage density of matter distribution ($\\\\rho_m$ given for a slightly negative\\ncurvature $R$) coincides with its vacuum energy density ($\\\\rho_{\\\\Lambda}$ given\\nfor a slightly positive curvature $\\\\Lambda$), i.e., the {\\\\it cosmic coincidence\\nproblem}, is now addressed by SSR. SSR provides its energy-momentum tensor of\\nperfect fluid, leading to the EOS of vacuum ($p=-\\\\rho_{\\\\Lambda}$). Einstein\\nequation for vacuum given by such SSR approach allows us to obtain\\n$\\\\rho_{\\\\Lambda}$ associated with a scalar curvature $\\\\Lambda$, whereas the\\nsolution of Einstein equation only in the presence of a homogeneous\\ndistribution of matter $\\\\rho_m$ for the whole universe presents a scalar\\ncurvature $R$, in such a way that the presence of the background field\\n$\\\\Lambda$ opposes the Riemannian curvature $R$, thus leading to a current\\neffective curvature $R_{eff}=R+\\\\Lambda\\\\approx 0$ according to observations.\",\"PeriodicalId\":501041,\"journal\":{\"name\":\"arXiv - PHYS - General Relativity and Quantum Cosmology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的目的是在一种新的时空因果结构(即所谓的对称狭义相对论(SSR))中为不确定性原理提供几何基础,在这种结构中,由于存在与真空能量相关的不变最小速度 $V$,所以出现了洛伦兹违反现象。SSR预言只有在速度$v$(其中$v0$为0)的特定情况下才会出现dS情景。对于 $v=v_0$,闵科夫斯基(伪欧几里得)空间被恢复为代表平坦空间($\Lambda=0$),而对于 $v>v_0$ ($\Phi>0$),反德西特(AdS)情景占上风($\Lambda<0$)。目前的宇宙是平坦的,因为其物质分布的平均密度(在曲率略为负值$R$的情况下为$\rho_m$)与其真空能量密度(在曲率略为正值$\Lambda的情况下为$\rho_{\Lambda}$)相吻合,即{it cosmic coincidenceproblem},现在由SSR来解决。SSR提供了完美流体的能量-动量张量,从而得出了真空的EOS($p=-\rho_{\Lambda}$)。通过这种 SSR 方法给出的真空爱因斯坦方程,我们可以得到与标量曲率 $\Lambda$ 相关的 $\rrh_{/\Lambda}$,而只有在整个宇宙的物质均匀分布情况下,爱因斯坦方程的解才会呈现标量曲率 $R$、在这种情况下,背景场$\Lambda$的存在与黎曼曲率$R$相反,从而根据观测结果导致当前的有效曲率$R_{eff}=R+\Lambda\approx 0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lorentz violation with an invariant minimum speed as foundation of the uncertainty principle in Minkowski, dS and AdS spaces
This research aims to provide the geometrical foundation of the uncertainty principle within a new causal structure of spacetime so-called Symmetrical Special Relativity (SSR), where there emerges a Lorentz violation due to the presence of an invariant minimum speed $V$ related to the vacuum energy. SSR predicts that a dS-scenario occurs only for a certain regime of speeds $v$, where $v0$. For $v=v_0$, Minkowski (pseudo-Euclidian) space is recovered for representing the flat space ($\Lambda=0$), and for $v>v_0$ ($\Phi>0$), Anti-de Sitter (AdS) scenario prevails ($\Lambda<0$). The fact that the current universe is flat as its average density of matter distribution ($\rho_m$ given for a slightly negative curvature $R$) coincides with its vacuum energy density ($\rho_{\Lambda}$ given for a slightly positive curvature $\Lambda$), i.e., the {\it cosmic coincidence problem}, is now addressed by SSR. SSR provides its energy-momentum tensor of perfect fluid, leading to the EOS of vacuum ($p=-\rho_{\Lambda}$). Einstein equation for vacuum given by such SSR approach allows us to obtain $\rho_{\Lambda}$ associated with a scalar curvature $\Lambda$, whereas the solution of Einstein equation only in the presence of a homogeneous distribution of matter $\rho_m$ for the whole universe presents a scalar curvature $R$, in such a way that the presence of the background field $\Lambda$ opposes the Riemannian curvature $R$, thus leading to a current effective curvature $R_{eff}=R+\Lambda\approx 0$ according to observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信