{"title":"关于每个函数的拉直","authors":"Thomas Blom","doi":"arxiv-2408.16539","DOIUrl":null,"url":null,"abstract":"We show that any functor between $\\infty$-categories can be straightened.\nMore precisely, we show that for any $\\infty$-category $\\mathcal{C}$, there is\nan equivalence between the $\\infty$-category\n$(\\mathrm{Cat}_{\\infty})_{/\\mathcal{C}}$ of $\\infty$-categories over\n$\\mathcal{C}$ and the $\\infty$-category of unital lax functors from\n$\\mathcal{C}$ to the double $\\infty$-category $\\mathrm{Corr}$ of\ncorrespondences. The proof relies on a certain universal property of the Morita\ncategory which is of independent interest.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the straightening of every functor\",\"authors\":\"Thomas Blom\",\"doi\":\"arxiv-2408.16539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any functor between $\\\\infty$-categories can be straightened.\\nMore precisely, we show that for any $\\\\infty$-category $\\\\mathcal{C}$, there is\\nan equivalence between the $\\\\infty$-category\\n$(\\\\mathrm{Cat}_{\\\\infty})_{/\\\\mathcal{C}}$ of $\\\\infty$-categories over\\n$\\\\mathcal{C}$ and the $\\\\infty$-category of unital lax functors from\\n$\\\\mathcal{C}$ to the double $\\\\infty$-category $\\\\mathrm{Corr}$ of\\ncorrespondences. The proof relies on a certain universal property of the Morita\\ncategory which is of independent interest.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that any functor between $\infty$-categories can be straightened.
More precisely, we show that for any $\infty$-category $\mathcal{C}$, there is
an equivalence between the $\infty$-category
$(\mathrm{Cat}_{\infty})_{/\mathcal{C}}$ of $\infty$-categories over
$\mathcal{C}$ and the $\infty$-category of unital lax functors from
$\mathcal{C}$ to the double $\infty$-category $\mathrm{Corr}$ of
correspondences. The proof relies on a certain universal property of the Morita
category which is of independent interest.