米类中的 $mathbb{E}_n$ 算法

Yu Leon Liu
{"title":"米类中的 $mathbb{E}_n$ 算法","authors":"Yu Leon Liu","doi":"arxiv-2408.05607","DOIUrl":null,"url":null,"abstract":"We prove a connectivity bound for maps of $\\infty$-operads of the form\n$\\mathbb{A}_{k_1} \\otimes \\cdots \\otimes \\mathbb{A}_{k_n} \\to \\mathbb{E}_n$,\nand as a consequence, give an inductive way to construct\n$\\mathbb{E}_n$-algebras in $m$-categories. The result follows from a version of\nEckmann-Hilton argument that takes into account both connectivity and arity of\n$\\infty$-operads. Along the way, we prove a technical Blakers-Massey type\nstatement for algebras of coherent $\\infty$-operads.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathbb{E}_n$-algebras in m-categories\",\"authors\":\"Yu Leon Liu\",\"doi\":\"arxiv-2408.05607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a connectivity bound for maps of $\\\\infty$-operads of the form\\n$\\\\mathbb{A}_{k_1} \\\\otimes \\\\cdots \\\\otimes \\\\mathbb{A}_{k_n} \\\\to \\\\mathbb{E}_n$,\\nand as a consequence, give an inductive way to construct\\n$\\\\mathbb{E}_n$-algebras in $m$-categories. The result follows from a version of\\nEckmann-Hilton argument that takes into account both connectivity and arity of\\n$\\\\infty$-operads. Along the way, we prove a technical Blakers-Massey type\\nstatement for algebras of coherent $\\\\infty$-operads.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了$\mathbb{A}_{k_1}形式的$\infty$-operads映射的连通性边界。\times \cdots \otimes \mathbb{A}_{k_n}\到 \mathbb{E}_n$,并由此给出了在 $m$ 类别中构造 $mathbb{E}_n$ 矩阵的归纳方法。这一结果源于艾克曼-希尔顿(Eckmann-Hilton)论证的一个版本,该论证同时考虑了$infty$-operads的连接性和枚举性。同时,我们还证明了相干$infty$-operads数组的技术性布莱克斯-马西类型声明(Blakers-Massey typestatement)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathbb{E}_n$-algebras in m-categories
We prove a connectivity bound for maps of $\infty$-operads of the form $\mathbb{A}_{k_1} \otimes \cdots \otimes \mathbb{A}_{k_n} \to \mathbb{E}_n$, and as a consequence, give an inductive way to construct $\mathbb{E}_n$-algebras in $m$-categories. The result follows from a version of Eckmann-Hilton argument that takes into account both connectivity and arity of $\infty$-operads. Along the way, we prove a technical Blakers-Massey type statement for algebras of coherent $\infty$-operads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信