{"title":"米类中的 $mathbb{E}_n$ 算法","authors":"Yu Leon Liu","doi":"arxiv-2408.05607","DOIUrl":null,"url":null,"abstract":"We prove a connectivity bound for maps of $\\infty$-operads of the form\n$\\mathbb{A}_{k_1} \\otimes \\cdots \\otimes \\mathbb{A}_{k_n} \\to \\mathbb{E}_n$,\nand as a consequence, give an inductive way to construct\n$\\mathbb{E}_n$-algebras in $m$-categories. The result follows from a version of\nEckmann-Hilton argument that takes into account both connectivity and arity of\n$\\infty$-operads. Along the way, we prove a technical Blakers-Massey type\nstatement for algebras of coherent $\\infty$-operads.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathbb{E}_n$-algebras in m-categories\",\"authors\":\"Yu Leon Liu\",\"doi\":\"arxiv-2408.05607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a connectivity bound for maps of $\\\\infty$-operads of the form\\n$\\\\mathbb{A}_{k_1} \\\\otimes \\\\cdots \\\\otimes \\\\mathbb{A}_{k_n} \\\\to \\\\mathbb{E}_n$,\\nand as a consequence, give an inductive way to construct\\n$\\\\mathbb{E}_n$-algebras in $m$-categories. The result follows from a version of\\nEckmann-Hilton argument that takes into account both connectivity and arity of\\n$\\\\infty$-operads. Along the way, we prove a technical Blakers-Massey type\\nstatement for algebras of coherent $\\\\infty$-operads.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove a connectivity bound for maps of $\infty$-operads of the form
$\mathbb{A}_{k_1} \otimes \cdots \otimes \mathbb{A}_{k_n} \to \mathbb{E}_n$,
and as a consequence, give an inductive way to construct
$\mathbb{E}_n$-algebras in $m$-categories. The result follows from a version of
Eckmann-Hilton argument that takes into account both connectivity and arity of
$\infty$-operads. Along the way, we prove a technical Blakers-Massey type
statement for algebras of coherent $\infty$-operads.