组合范畴中的规定对偶动力学

Alexandru Chirvasitu
{"title":"组合范畴中的规定对偶动力学","authors":"Alexandru Chirvasitu","doi":"arxiv-2408.08167","DOIUrl":null,"url":null,"abstract":"We prove that there exist Hopf algebras with surjective, non-bijective\nantipode which admit no non-trivial morphisms from Hopf algebras with bijective\nantipode; in particular, they are not quotients of such. This answers a\nquestion left open in prior work, and contrasts with the dual setup whereby a\nHopf algebra has injective antipode precisely when it embeds into one with\nbijective antipode. The examples rely on the broader phenomenon of realizing\npre-specified subspace lattices as comodule lattices: for a finite-dimensional\nvector space $V$ and a sequence $(\\mathcal{L}_r)_r$ of successively finer\nlattices of subspaces thereof, assuming the minimal subquotients of the\nsupremum $\\bigvee_r \\mathcal{L}_r$ are all at least 2-dimensional, there is a\nHopf algebra equipping $V$ with a comodule structure in such a fashion that the\nlattice of comodules of the $r^{th}$ dual comodule $V^{r*}$ is precisely the\ngiven $\\mathcal{L}_r$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed duality dynamics in comodule categories\",\"authors\":\"Alexandru Chirvasitu\",\"doi\":\"arxiv-2408.08167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that there exist Hopf algebras with surjective, non-bijective\\nantipode which admit no non-trivial morphisms from Hopf algebras with bijective\\nantipode; in particular, they are not quotients of such. This answers a\\nquestion left open in prior work, and contrasts with the dual setup whereby a\\nHopf algebra has injective antipode precisely when it embeds into one with\\nbijective antipode. The examples rely on the broader phenomenon of realizing\\npre-specified subspace lattices as comodule lattices: for a finite-dimensional\\nvector space $V$ and a sequence $(\\\\mathcal{L}_r)_r$ of successively finer\\nlattices of subspaces thereof, assuming the minimal subquotients of the\\nsupremum $\\\\bigvee_r \\\\mathcal{L}_r$ are all at least 2-dimensional, there is a\\nHopf algebra equipping $V$ with a comodule structure in such a fashion that the\\nlattice of comodules of the $r^{th}$ dual comodule $V^{r*}$ is precisely the\\ngiven $\\\\mathcal{L}_r$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,存在着具有注入式、非双注入式反顶的霍普夫代数,它们不允许来自具有双注入式反顶的霍普夫代数的非琐态变;特别是,它们不是双注入式反顶的霍普夫代数的商。这回答了先前工作中悬而未决的问题,并与霍普夫代数在嵌入到具有双射反顶的霍普夫代数时具有注入反顶的双重设置形成了对比。这些例子依赖于将预先指定的子空间网格变为逗点网格这一更广泛的现象:对于有限维向量空间 $V$ 及其子空间的连续更精细网格序列 $(\mathcal{L}_r)_r$,假设上簇 $\bigvee_r \mathcal{L}_r$的最小子序列都至少是 2 维的、有一个霍普夫代数给 $V$ 配备了一个逗点结构,使得 $r^{th}$ 对偶逗点 $V^{r*}$ 的逗点网格恰好是给定的 $\mathcal{L}_r$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed duality dynamics in comodule categories
We prove that there exist Hopf algebras with surjective, non-bijective antipode which admit no non-trivial morphisms from Hopf algebras with bijective antipode; in particular, they are not quotients of such. This answers a question left open in prior work, and contrasts with the dual setup whereby a Hopf algebra has injective antipode precisely when it embeds into one with bijective antipode. The examples rely on the broader phenomenon of realizing pre-specified subspace lattices as comodule lattices: for a finite-dimensional vector space $V$ and a sequence $(\mathcal{L}_r)_r$ of successively finer lattices of subspaces thereof, assuming the minimal subquotients of the supremum $\bigvee_r \mathcal{L}_r$ are all at least 2-dimensional, there is a Hopf algebra equipping $V$ with a comodule structure in such a fashion that the lattice of comodules of the $r^{th}$ dual comodule $V^{r*}$ is precisely the given $\mathcal{L}_r$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信