对象-分类器拓扑中洛维理论的有限代数表述

Marcelo Fiore, Sanjiv Ranchod
{"title":"对象-分类器拓扑中洛维理论的有限代数表述","authors":"Marcelo Fiore, Sanjiv Ranchod","doi":"arxiv-2408.08980","DOIUrl":null,"url":null,"abstract":"Over the topos of sets, the notion of Lawvere theory is infinite\ncountably-sorted algebraic but not one-sorted algebraic. Shifting viewpoint\nover the object-classifier topos, a finite algebraic presentation of Lawvere\ntheories is considered.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite algebraic presentation of Lawvere theories in the object-classifier topos\",\"authors\":\"Marcelo Fiore, Sanjiv Ranchod\",\"doi\":\"arxiv-2408.08980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the topos of sets, the notion of Lawvere theory is infinite\\ncountably-sorted algebraic but not one-sorted algebraic. Shifting viewpoint\\nover the object-classifier topos, a finite algebraic presentation of Lawvere\\ntheories is considered.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在集合拓扑上,劳维尔理论的概念是无限可数排序代数,但不是一排序代数。我们将视角转移到对象分类器拓扑上,考虑了定律理论的有限代数呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite algebraic presentation of Lawvere theories in the object-classifier topos
Over the topos of sets, the notion of Lawvere theory is infinite countably-sorted algebraic but not one-sorted algebraic. Shifting viewpoint over the object-classifier topos, a finite algebraic presentation of Lawvere theories is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信