在$\infty$-装备中的形式范畴论II:拉克斯函数、一元性和纤维性

Jaco Ruit
{"title":"在$\\infty$-装备中的形式范畴论II:拉克斯函数、一元性和纤维性","authors":"Jaco Ruit","doi":"arxiv-2408.15190","DOIUrl":null,"url":null,"abstract":"We study the framework of $\\infty$-equipments which is designed to produce\nwell-behaved theories for different generalizations of $\\infty$-categories in a\nsynthetic and uniform fashion. We consider notions of (lax) functors between\nthese equipments, closed monoidal structures on these equipments, and\nfibrations internal to these equipments. As a main application, we will\ndemonstrate that the foundations of internal $\\infty$-category theory can be\nreadily obtained using this formalism.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal category theory in $\\\\infty$-equipments II: Lax functors, monoidality and fibrations\",\"authors\":\"Jaco Ruit\",\"doi\":\"arxiv-2408.15190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the framework of $\\\\infty$-equipments which is designed to produce\\nwell-behaved theories for different generalizations of $\\\\infty$-categories in a\\nsynthetic and uniform fashion. We consider notions of (lax) functors between\\nthese equipments, closed monoidal structures on these equipments, and\\nfibrations internal to these equipments. As a main application, we will\\ndemonstrate that the foundations of internal $\\\\infty$-category theory can be\\nreadily obtained using this formalism.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究$\infty$-装备的框架,它旨在以合成和统一的方式为$\infty$-范畴的不同广义化产生良好的理论。我们考虑这些装备之间的(宽松)函数的概念、这些装备上的闭单模结构以及这些装备内部的振动。作为一个主要应用,我们将证明内部$infty$范畴理论的基础可以很容易地用这个形式主义得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal category theory in $\infty$-equipments II: Lax functors, monoidality and fibrations
We study the framework of $\infty$-equipments which is designed to produce well-behaved theories for different generalizations of $\infty$-categories in a synthetic and uniform fashion. We consider notions of (lax) functors between these equipments, closed monoidal structures on these equipments, and fibrations internal to these equipments. As a main application, we will demonstrate that the foundations of internal $\infty$-category theory can be readily obtained using this formalism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信