{"title":"通过丰富同调理论实现三类普遍属性","authors":"Adrian Miranda","doi":"arxiv-2409.01837","DOIUrl":null,"url":null,"abstract":"We develop the theory of tricategorical limits and colimits, and show that\nthey can be modelled up to biequivalence via certain homotopically well-behaved\nlimits and colimits enriched over the monoidal model category $\\mathbf{Gray}$\nof $2$-categories and $2$-functors. This categorifies the relationship that\nbicategorical limits and colimits have with the so called `flexible' enriched\nlimits in $2$-category theory. As examples, we establish the tricategorical\nuniversal properties of Kleisli constructions for pseudomonads, Eilenberg-Moore\nand Kleisli constructions for (op)monoidal pseudomonads, centre constructions\nfor $\\mathbf{Gray}$-monoids, and strictifications of bicategories and\npseudo-double categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tricategorical Universal Properties Via Enriched Homotopy Theory\",\"authors\":\"Adrian Miranda\",\"doi\":\"arxiv-2409.01837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the theory of tricategorical limits and colimits, and show that\\nthey can be modelled up to biequivalence via certain homotopically well-behaved\\nlimits and colimits enriched over the monoidal model category $\\\\mathbf{Gray}$\\nof $2$-categories and $2$-functors. This categorifies the relationship that\\nbicategorical limits and colimits have with the so called `flexible' enriched\\nlimits in $2$-category theory. As examples, we establish the tricategorical\\nuniversal properties of Kleisli constructions for pseudomonads, Eilenberg-Moore\\nand Kleisli constructions for (op)monoidal pseudomonads, centre constructions\\nfor $\\\\mathbf{Gray}$-monoids, and strictifications of bicategories and\\npseudo-double categories.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tricategorical Universal Properties Via Enriched Homotopy Theory
We develop the theory of tricategorical limits and colimits, and show that
they can be modelled up to biequivalence via certain homotopically well-behaved
limits and colimits enriched over the monoidal model category $\mathbf{Gray}$
of $2$-categories and $2$-functors. This categorifies the relationship that
bicategorical limits and colimits have with the so called `flexible' enriched
limits in $2$-category theory. As examples, we establish the tricategorical
universal properties of Kleisli constructions for pseudomonads, Eilenberg-Moore
and Kleisli constructions for (op)monoidal pseudomonads, centre constructions
for $\mathbf{Gray}$-monoids, and strictifications of bicategories and
pseudo-double categories.