高分类伽罗瓦理论 I 中解除条件的不合理效力:一个准分类伽罗瓦定理

Joseph Rennie
{"title":"高分类伽罗瓦理论 I 中解除条件的不合理效力:一个准分类伽罗瓦定理","authors":"Joseph Rennie","doi":"arxiv-2409.03347","DOIUrl":null,"url":null,"abstract":"In (Borceux-Janelidze 2001) they prove a Categorical Galois Theorem for\nordinary categories, and establish the main result of (Joyal-Tierney 1984),\nalong with the classical Galois theory of Rings, as instances of this more\ngeneral result. The main result of the present work refines this to a\nQuasicategorical Galois Theorem, by drawing heavily on the foundation laid in\n(Lurie 2024). More importantly, the argument used to prove the result is\nintended to highlight a deep connection between factorization systems\n(specifically the lex modalities of (Anel-Biedermann-Finster-Joyal 2021)),\nhigher-categorical Galois Theorems, and Galois theories internal to higher\ntoposes. This is the first part in a series of works, intended merely to\nmotivate the lens and prove Theorem 3.4. In future work, we will delve into a\ngeneralization of the argument, and offer tools for producing applications.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Unreasonable Efficacy of the Lifting Condition in Higher Categorical Galois Theory I: a Quasi-categorical Galois Theorem\",\"authors\":\"Joseph Rennie\",\"doi\":\"arxiv-2409.03347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In (Borceux-Janelidze 2001) they prove a Categorical Galois Theorem for\\nordinary categories, and establish the main result of (Joyal-Tierney 1984),\\nalong with the classical Galois theory of Rings, as instances of this more\\ngeneral result. The main result of the present work refines this to a\\nQuasicategorical Galois Theorem, by drawing heavily on the foundation laid in\\n(Lurie 2024). More importantly, the argument used to prove the result is\\nintended to highlight a deep connection between factorization systems\\n(specifically the lex modalities of (Anel-Biedermann-Finster-Joyal 2021)),\\nhigher-categorical Galois Theorems, and Galois theories internal to higher\\ntoposes. This is the first part in a series of works, intended merely to\\nmotivate the lens and prove Theorem 3.4. In future work, we will delve into a\\ngeneralization of the argument, and offer tools for producing applications.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在(Borceux-Janelidze 2001)中,他们证明了普通范畴的分类伽罗瓦定理,并建立了(Joyal-Tierney 1984)的主要结果,以及经典的环伽罗瓦理论,作为这个更一般结果的实例。本研究的主要结果在很大程度上借鉴了(Lurie 2024)中奠定的基础,将其细化为准范畴伽罗瓦定理。更重要的是,用于证明这一结果的论证旨在强调因式分解系统(特别是(阿奈尔-比德尔曼-芬斯特-乔亚尔 2021)的列克斯模)、高分类伽罗瓦定理和高分类内部伽罗瓦理论之间的深刻联系。这是一系列工作的第一部分,目的只是为了激发透镜并证明定理 3.4。在未来的工作中,我们将深入研究论证的广义化,并提供应用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Unreasonable Efficacy of the Lifting Condition in Higher Categorical Galois Theory I: a Quasi-categorical Galois Theorem
In (Borceux-Janelidze 2001) they prove a Categorical Galois Theorem for ordinary categories, and establish the main result of (Joyal-Tierney 1984), along with the classical Galois theory of Rings, as instances of this more general result. The main result of the present work refines this to a Quasicategorical Galois Theorem, by drawing heavily on the foundation laid in (Lurie 2024). More importantly, the argument used to prove the result is intended to highlight a deep connection between factorization systems (specifically the lex modalities of (Anel-Biedermann-Finster-Joyal 2021)), higher-categorical Galois Theorems, and Galois theories internal to higher toposes. This is the first part in a series of works, intended merely to motivate the lens and prove Theorem 3.4. In future work, we will delve into a generalization of the argument, and offer tools for producing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信