关于稳定梯度利玛窦孤子的标量曲率下界的说明

Shota Hamanaka
{"title":"关于稳定梯度利玛窦孤子的标量曲率下界的说明","authors":"Shota Hamanaka","doi":"arxiv-2409.00583","DOIUrl":null,"url":null,"abstract":"We provide new type of decay estimate for scalar curvatures of steady\ngradient Ricci solitons. We also give certain upper bound for the diameter of a\nRiemannian manifold whose $\\infty$-Bakry--Emery Ricci tensor is bounded by some\npositive constant from below. For the proofs, we use $\\mu$-bubbles introduced\nby Gromov.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"165 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on scalar curvature lower bounds of steady gradient Ricci solitons\",\"authors\":\"Shota Hamanaka\",\"doi\":\"arxiv-2409.00583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide new type of decay estimate for scalar curvatures of steady\\ngradient Ricci solitons. We also give certain upper bound for the diameter of a\\nRiemannian manifold whose $\\\\infty$-Bakry--Emery Ricci tensor is bounded by some\\npositive constant from below. For the proofs, we use $\\\\mu$-bubbles introduced\\nby Gromov.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为稳梯度里奇孤子的标量曲率提供了新型衰减估计。我们还给出了$\infty$-Bakry--Emery Ricci张量自下而上以某个正常数为界的黎曼流形的直径上限。为了证明这一点,我们使用了格罗莫夫引入的$\mu$气泡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on scalar curvature lower bounds of steady gradient Ricci solitons
We provide new type of decay estimate for scalar curvatures of steady gradient Ricci solitons. We also give certain upper bound for the diameter of a Riemannian manifold whose $\infty$-Bakry--Emery Ricci tensor is bounded by some positive constant from below. For the proofs, we use $\mu$-bubbles introduced by Gromov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信