极值法诺流形上马渊孤子的连续性方法

Tomoyuki Hisamoto, Satoshi Nakamura
{"title":"极值法诺流形上马渊孤子的连续性方法","authors":"Tomoyuki Hisamoto, Satoshi Nakamura","doi":"arxiv-2409.00886","DOIUrl":null,"url":null,"abstract":"We run the continuity method for Mabuchi's generalization of\nK\\\"{a}hler-Einstein metrics, assuming the existence of an extremal K\\\"{a}hler\nmetric. It gives an analytic proof (without minimal model program) of the\nrecent existence result obtained by Apostolov, Lahdili and Nitta. Our key\nobservation is the boundedness of the energy functionals along the continuity\nmethod. The same argument can be applied to general $g$-solitons and\n$g$-extremal metrics.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"350 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuity method for the Mabuchi soliton on the extremal Fano manifolds\",\"authors\":\"Tomoyuki Hisamoto, Satoshi Nakamura\",\"doi\":\"arxiv-2409.00886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We run the continuity method for Mabuchi's generalization of\\nK\\\\\\\"{a}hler-Einstein metrics, assuming the existence of an extremal K\\\\\\\"{a}hler\\nmetric. It gives an analytic proof (without minimal model program) of the\\nrecent existence result obtained by Apostolov, Lahdili and Nitta. Our key\\nobservation is the boundedness of the energy functionals along the continuity\\nmethod. The same argument can be applied to general $g$-solitons and\\n$g$-extremal metrics.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"350 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们假定存在极值K/{a}hler-爱因斯坦度量,运行了马渊对(K/{a}hler-爱因斯坦)度量广义化的连续性方法。它给出了阿波斯托洛夫、拉赫迪利和新田获得的新近存在性结果的解析证明(无需最小模型程序)。我们的关键观测是能量函数沿连续性方法的有界性。同样的论证也可以应用于一般的g元索利子和g元极端度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuity method for the Mabuchi soliton on the extremal Fano manifolds
We run the continuity method for Mabuchi's generalization of K\"{a}hler-Einstein metrics, assuming the existence of an extremal K\"{a}hler metric. It gives an analytic proof (without minimal model program) of the recent existence result obtained by Apostolov, Lahdili and Nitta. Our key observation is the boundedness of the energy functionals along the continuity method. The same argument can be applied to general $g$-solitons and $g$-extremal metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信