{"title":"Kenmotsu 流形的双斜黎曼映射和一些最优不等式","authors":"Adeeba Zaidi, Gauree Shanker","doi":"arxiv-2409.01636","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce bi-slant Riemannian maps from Riemannian\nmanifolds to Kenmotsu manifolds, which are the natural generalizations of\ninvariant, anti-invariant, semi-invariant, slant, semi-slant and hemi-slant\nRiemannian maps, with nontrivial examples. We study these maps and give some\ncurvature relations for $(rangeF_*)^\\perp$. We construct Chen-Ricci\ninequalities, DDVV inequalities, and further some optimal inequalities\ninvolving Casorati curvatures from bi-slant Riemannian manifolds to Kenmotsu\nspace forms.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-slant Riemannian maps to Kenmotsu manifolds and some optimal inequalities\",\"authors\":\"Adeeba Zaidi, Gauree Shanker\",\"doi\":\"arxiv-2409.01636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce bi-slant Riemannian maps from Riemannian\\nmanifolds to Kenmotsu manifolds, which are the natural generalizations of\\ninvariant, anti-invariant, semi-invariant, slant, semi-slant and hemi-slant\\nRiemannian maps, with nontrivial examples. We study these maps and give some\\ncurvature relations for $(rangeF_*)^\\\\perp$. We construct Chen-Ricci\\ninequalities, DDVV inequalities, and further some optimal inequalities\\ninvolving Casorati curvatures from bi-slant Riemannian manifolds to Kenmotsu\\nspace forms.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bi-slant Riemannian maps to Kenmotsu manifolds and some optimal inequalities
In this paper, we introduce bi-slant Riemannian maps from Riemannian
manifolds to Kenmotsu manifolds, which are the natural generalizations of
invariant, anti-invariant, semi-invariant, slant, semi-slant and hemi-slant
Riemannian maps, with nontrivial examples. We study these maps and give some
curvature relations for $(rangeF_*)^\perp$. We construct Chen-Ricci
inequalities, DDVV inequalities, and further some optimal inequalities
involving Casorati curvatures from bi-slant Riemannian manifolds to Kenmotsu
space forms.