重新审视 $\mathbb{R}^3$ 中的一般平均曲率流

Otis Chodosh, Kyeongsu Choi, Christos Mantoulidis, Felix Schulze
{"title":"重新审视 $\\mathbb{R}^3$ 中的一般平均曲率流","authors":"Otis Chodosh, Kyeongsu Choi, Christos Mantoulidis, Felix Schulze","doi":"arxiv-2409.01463","DOIUrl":null,"url":null,"abstract":"Bamler--Kleiner recently proved a multiplicity-one theorem for mean curvature\nflow in $\\mathbb{R}^3$ and combined it with the authors' work on generic mean\ncurvature flows to fully resolve Huisken's genericity conjecture. In this paper\nwe show that a short density-drop theorem plus the Bamler--Kleiner\nmultiplicity-one theorem for tangent flows at the first nongeneric singular\ntime suffice to resolve Huisken's conjecture -- without relying on the strict\ngenus drop theorem for one-sided ancient flows previously established by the\nauthors.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting generic mean curvature flow in $\\\\mathbb{R}^3$\",\"authors\":\"Otis Chodosh, Kyeongsu Choi, Christos Mantoulidis, Felix Schulze\",\"doi\":\"arxiv-2409.01463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bamler--Kleiner recently proved a multiplicity-one theorem for mean curvature\\nflow in $\\\\mathbb{R}^3$ and combined it with the authors' work on generic mean\\ncurvature flows to fully resolve Huisken's genericity conjecture. In this paper\\nwe show that a short density-drop theorem plus the Bamler--Kleiner\\nmultiplicity-one theorem for tangent flows at the first nongeneric singular\\ntime suffice to resolve Huisken's conjecture -- without relying on the strict\\ngenus drop theorem for one-sided ancient flows previously established by the\\nauthors.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bamler--Kleiner最近证明了$\mathbb{R}^3$中平均曲率流的多重性一定理,并将其与作者关于泛函平均曲率流的工作相结合,完全解决了Huisken的泛函猜想。在本文中,我们证明了一个简短的密度下降定理加上巴姆勒--克莱因切线流在第一个非通性单曲时间的多重性一定理足以解决惠斯肯猜想--而无需依赖作者之前建立的单侧古流的严格根纳斯下降定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting generic mean curvature flow in $\mathbb{R}^3$
Bamler--Kleiner recently proved a multiplicity-one theorem for mean curvature flow in $\mathbb{R}^3$ and combined it with the authors' work on generic mean curvature flows to fully resolve Huisken's genericity conjecture. In this paper we show that a short density-drop theorem plus the Bamler--Kleiner multiplicity-one theorem for tangent flows at the first nongeneric singular time suffice to resolve Huisken's conjecture -- without relying on the strict genus drop theorem for one-sided ancient flows previously established by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信