W^{2,n} $-超曲面的亚历山德罗夫球定理

Mario Santilli, Paolo Valentini
{"title":"W^{2,n} $-超曲面的亚历山德罗夫球定理","authors":"Mario Santilli, Paolo Valentini","doi":"arxiv-2409.01061","DOIUrl":null,"url":null,"abstract":"In this paper we extend Alexandrov's sphere theorems for higher-order mean\ncurvature functions to $ W^{2,n} $-regular hypersurfaces under a general\ndegenerate elliptic condition. The proof is based on the extension of the\nMontiel-Ros argument to the aforementioned class of hypersurfaces and on the\nexistence of suitable Legendrian cycles over them. Using the latter we can also\nprove that there are $ n $-dimensional Legendrian cycles with $ 2n\n$-dimensional support, hence answering a question by Rataj and Zaehle. Finally\nwe provide a very general version of the umbilicality theorem for Sobolev-type\nhypersurfaces.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alexandrov sphere theorems for $ W^{2,n} $-hypersurfaces\",\"authors\":\"Mario Santilli, Paolo Valentini\",\"doi\":\"arxiv-2409.01061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we extend Alexandrov's sphere theorems for higher-order mean\\ncurvature functions to $ W^{2,n} $-regular hypersurfaces under a general\\ndegenerate elliptic condition. The proof is based on the extension of the\\nMontiel-Ros argument to the aforementioned class of hypersurfaces and on the\\nexistence of suitable Legendrian cycles over them. Using the latter we can also\\nprove that there are $ n $-dimensional Legendrian cycles with $ 2n\\n$-dimensional support, hence answering a question by Rataj and Zaehle. Finally\\nwe provide a very general version of the umbilicality theorem for Sobolev-type\\nhypersurfaces.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将亚历山德罗夫的高阶meancurvature函数球面定理扩展到一般退化椭圆条件下的$ W^{2,n} $规则超曲面。证明的基础是将蒙蒂尔-罗斯(Montiel-Ros)论证扩展到上述超曲面类别,以及在这些超曲面上存在合适的 Legendrian 循环。利用后者,我们还可以证明存在 $ 2n$ 维支持的 $ n $ 维 Legendrian 循环,从而回答了拉塔杰和扎勒的一个问题。最后,我们提供了索波列夫型曲面的脐性定理的一般版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alexandrov sphere theorems for $ W^{2,n} $-hypersurfaces
In this paper we extend Alexandrov's sphere theorems for higher-order mean curvature functions to $ W^{2,n} $-regular hypersurfaces under a general degenerate elliptic condition. The proof is based on the extension of the Montiel-Ros argument to the aforementioned class of hypersurfaces and on the existence of suitable Legendrian cycles over them. Using the latter we can also prove that there are $ n $-dimensional Legendrian cycles with $ 2n $-dimensional support, hence answering a question by Rataj and Zaehle. Finally we provide a very general version of the umbilicality theorem for Sobolev-type hypersurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信