α-富塔基特征公式

Kartick Ghosh
{"title":"α-富塔基特征公式","authors":"Kartick Ghosh","doi":"arxiv-2409.01734","DOIUrl":null,"url":null,"abstract":"Alvarez-Consul--Garcia-Fernandez--Garcia-Prada introduced the\nK\\\"ahler-Yang-Mills equations. They also introduced the $\\alpha$-Futaki\ncharacter, an analog of the Futaki invariant, as an obstruction to the\nexistence of the K\\\"ahler-Yang-Mills equations. The equations depend on a\ncoupling constant $\\alpha$. Solutions of these equations with coupling constant\n$\\alpha>0$ are of utmost importance. In this paper, we provide a formula for\nthe $\\alpha$-Futaki character on certain ample line bundles over toric\nmanifolds. We then show that there are no solutions with $\\alpha>0$ on certain\nample line bundles over certain toric manifolds and compute the value of\n$\\alpha$ if a solution exists. We also relate our result to the existence\nresult of Keller-Friedman in dimension-two.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A formula for the α-Futaki character\",\"authors\":\"Kartick Ghosh\",\"doi\":\"arxiv-2409.01734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alvarez-Consul--Garcia-Fernandez--Garcia-Prada introduced the\\nK\\\\\\\"ahler-Yang-Mills equations. They also introduced the $\\\\alpha$-Futaki\\ncharacter, an analog of the Futaki invariant, as an obstruction to the\\nexistence of the K\\\\\\\"ahler-Yang-Mills equations. The equations depend on a\\ncoupling constant $\\\\alpha$. Solutions of these equations with coupling constant\\n$\\\\alpha>0$ are of utmost importance. In this paper, we provide a formula for\\nthe $\\\\alpha$-Futaki character on certain ample line bundles over toric\\nmanifolds. We then show that there are no solutions with $\\\\alpha>0$ on certain\\nample line bundles over certain toric manifolds and compute the value of\\n$\\\\alpha$ if a solution exists. We also relate our result to the existence\\nresult of Keller-Friedman in dimension-two.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔瓦雷斯-康苏尔--加西亚-费尔南德斯--加西亚-普拉达引入了克勒-杨-米尔斯方程。他们还引入了$\alpha$-Futakicharacter,即Futaki不变式的一个类似物,作为K/ahler-Yang-Mills方程存在的一个障碍。这些方程取决于耦合常数 $\alpha$。这些方程中耦合常数$\alpha>0$的解至关重要。在本文中,我们提供了关于环状曼弗雷德上某些充裕线束的 $\alpha$-Futaki 特性的公式。然后,我们证明了在某些环状流形上的某些样条线束上不存在$\alpha>0$的解,并计算了如果存在解的话$\alpha$的值。我们还将我们的结果与 Keller-Friedman 在二维中的存在性结果联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A formula for the α-Futaki character
Alvarez-Consul--Garcia-Fernandez--Garcia-Prada introduced the K\"ahler-Yang-Mills equations. They also introduced the $\alpha$-Futaki character, an analog of the Futaki invariant, as an obstruction to the existence of the K\"ahler-Yang-Mills equations. The equations depend on a coupling constant $\alpha$. Solutions of these equations with coupling constant $\alpha>0$ are of utmost importance. In this paper, we provide a formula for the $\alpha$-Futaki character on certain ample line bundles over toric manifolds. We then show that there are no solutions with $\alpha>0$ on certain ample line bundles over certain toric manifolds and compute the value of $\alpha$ if a solution exists. We also relate our result to the existence result of Keller-Friedman in dimension-two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信