等谱球面空间形式和最大体积轨道折线

Alfredo Álzaga, Emilio A. Lauret
{"title":"等谱球面空间形式和最大体积轨道折线","authors":"Alfredo Álzaga, Emilio A. Lauret","doi":"arxiv-2409.02213","DOIUrl":null,"url":null,"abstract":"We prove that $\\operatorname{vol}(S^{d})/8$ is the highest volume of a pair\nof $d$-dimensional isospectral and non-isometric spherical orbifolds for any\n$d\\geq5$. Furthermore, we show that $\\operatorname{vol}(S^{2n-1})/11$ is the\nhighest volume of a pair of $(2n-1)$-dimensional isospectral and non-isometric\nspherical space forms if either $n\\geq11$ and $n\\equiv 1\\pmod 5$, or $n\\geq7$\nand $n\\equiv 2\\pmod 5$, or $n\\geq3$ and $n\\equiv 3\\pmod 5$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isospectral spherical space forms and orbifolds of highest volume\",\"authors\":\"Alfredo Álzaga, Emilio A. Lauret\",\"doi\":\"arxiv-2409.02213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that $\\\\operatorname{vol}(S^{d})/8$ is the highest volume of a pair\\nof $d$-dimensional isospectral and non-isometric spherical orbifolds for any\\n$d\\\\geq5$. Furthermore, we show that $\\\\operatorname{vol}(S^{2n-1})/11$ is the\\nhighest volume of a pair of $(2n-1)$-dimensional isospectral and non-isometric\\nspherical space forms if either $n\\\\geq11$ and $n\\\\equiv 1\\\\pmod 5$, or $n\\\\geq7$\\nand $n\\\\equiv 2\\\\pmod 5$, or $n\\\\geq3$ and $n\\\\equiv 3\\\\pmod 5$.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任意$dgeq5$,$operatorname{vol}(S^{d})/8$是一对$d$维等谱非等轴球面轨道的最大体积。此外,我们还证明,如果 $n\geq11$ 和 $n\equiv 1\pmod 5$,或者 $n\geq7$ 和 $n\equiv 2\pmod 5$,或者 $n\geq3$ 和 $n\equiv 3\pmod 5$,那么 $\operatorname{vol}(S^{2n-1})/11$ 是一对 $(2n-1)$维等谱非等距球面空间形式的最大体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isospectral spherical space forms and orbifolds of highest volume
We prove that $\operatorname{vol}(S^{d})/8$ is the highest volume of a pair of $d$-dimensional isospectral and non-isometric spherical orbifolds for any $d\geq5$. Furthermore, we show that $\operatorname{vol}(S^{2n-1})/11$ is the highest volume of a pair of $(2n-1)$-dimensional isospectral and non-isometric spherical space forms if either $n\geq11$ and $n\equiv 1\pmod 5$, or $n\geq7$ and $n\equiv 2\pmod 5$, or $n\geq3$ and $n\equiv 3\pmod 5$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信