{"title":"具有大列夫谢茨缺陷的法诺 4 折叠的 K-多稳性","authors":"Eleonora A. Romano, Saverio A. Secci","doi":"arxiv-2409.03571","DOIUrl":null,"url":null,"abstract":"We study K-stability on smooth complex Fano 4-folds having large Lefschetz\ndefect, that is greater or equal then 3, with a special focus on the case of\nLefschetz defect 3. In particular, we determine whether these Fano 4-folds are\nK-polystable or not, and show that there are 5 families (out of 19) of\nK-polystable smooth Fano 4-folds with Lefschetz defect 3.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-polystability of Fano 4-folds with large Lefschetz defect\",\"authors\":\"Eleonora A. Romano, Saverio A. Secci\",\"doi\":\"arxiv-2409.03571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study K-stability on smooth complex Fano 4-folds having large Lefschetz\\ndefect, that is greater or equal then 3, with a special focus on the case of\\nLefschetz defect 3. In particular, we determine whether these Fano 4-folds are\\nK-polystable or not, and show that there are 5 families (out of 19) of\\nK-polystable smooth Fano 4-folds with Lefschetz defect 3.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
K-polystability of Fano 4-folds with large Lefschetz defect
We study K-stability on smooth complex Fano 4-folds having large Lefschetz
defect, that is greater or equal then 3, with a special focus on the case of
Lefschetz defect 3. In particular, we determine whether these Fano 4-folds are
K-polystable or not, and show that there are 5 families (out of 19) of
K-polystable smooth Fano 4-folds with Lefschetz defect 3.