无界凸集中的威尔莫尔型不等式

Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang
{"title":"无界凸集中的威尔莫尔型不等式","authors":"Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang","doi":"arxiv-2409.03321","DOIUrl":null,"url":null,"abstract":"In this paper we prove the following Willmore-type inequality: On an\nunbounded closed convex set $K\\subset\\mathbb{R}^{n+1}$ $(n\\ge 2)$, for any\nembedded hypersurface $\\Sigma\\subset K$ with boundary $\\partial\\Sigma\\subset\n\\partial K$ satisfying certain contact angle condition, there holds\n$$\\frac1{n+1}\\int_{\\Sigma}\\vert{H}\\vert^n{\\rm d}A\\ge{\\rm\nAVR}(K)\\vert\\mathbb{B}^{n+1}\\vert.$$ Moreover, equality holds if and only if\n$\\Sigma$ is a part of a sphere and $K\\setminus\\Omega$ is a part of the solid\ncone determined by $\\Sigma$. Here $\\Omega$ is the bounded domain enclosed by\n$\\Sigma$ and $\\partial K$, $H$ is the normalized mean curvature of $\\Sigma$,\nand ${\\rm AVR}(K)$ is the asymptotic volume ratio of $K$. We also prove an\nanisotropic version of this Willmore-type inequality. As a special case, we\nobtain a Willmore-type inequality for anisotropic capillary hypersurfaces in a\nhalf-space.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Willmore-type inequality in unbounded convex sets\",\"authors\":\"Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang\",\"doi\":\"arxiv-2409.03321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the following Willmore-type inequality: On an\\nunbounded closed convex set $K\\\\subset\\\\mathbb{R}^{n+1}$ $(n\\\\ge 2)$, for any\\nembedded hypersurface $\\\\Sigma\\\\subset K$ with boundary $\\\\partial\\\\Sigma\\\\subset\\n\\\\partial K$ satisfying certain contact angle condition, there holds\\n$$\\\\frac1{n+1}\\\\int_{\\\\Sigma}\\\\vert{H}\\\\vert^n{\\\\rm d}A\\\\ge{\\\\rm\\nAVR}(K)\\\\vert\\\\mathbb{B}^{n+1}\\\\vert.$$ Moreover, equality holds if and only if\\n$\\\\Sigma$ is a part of a sphere and $K\\\\setminus\\\\Omega$ is a part of the solid\\ncone determined by $\\\\Sigma$. Here $\\\\Omega$ is the bounded domain enclosed by\\n$\\\\Sigma$ and $\\\\partial K$, $H$ is the normalized mean curvature of $\\\\Sigma$,\\nand ${\\\\rm AVR}(K)$ is the asymptotic volume ratio of $K$. We also prove an\\nanisotropic version of this Willmore-type inequality. As a special case, we\\nobtain a Willmore-type inequality for anisotropic capillary hypersurfaces in a\\nhalf-space.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了以下威尔莫尔式不等式:在一个无界封闭凸集 $K\subset\mathbb{R}^{n+1}$(n\ge 2)$上,对于边界为$partial\Sigma\subset\partial K$ 的任意嵌入超曲面$\Sigma/subset K$ 满足一定的接触角条件、there holds$$\frac1{n+1}\int_{\Sigma}\vert{H}\vert^n{\rm d}A\ge{\rmAVR}(K)\vert\mathbb{B}^{n+1}\vert.$$ 此外,当且仅当$\Sigma$是球体的一部分,并且$K\setminus\Omega$是由$\Sigma决定的实体圆锥体的一部分时,相等才成立。这里$\Omega$是$\Sigma$和$\partial K$围成的有界域,$H$是$\Sigma$的归一化平均曲率,${\rm AVR}(K)$是$K$的渐近体积比。我们还证明了这个威尔莫尔式不等式的各向异性版本。作为特例,我们得到了半空间中各向异性毛细超曲面的威尔莫尔式不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Willmore-type inequality in unbounded convex sets
In this paper we prove the following Willmore-type inequality: On an unbounded closed convex set $K\subset\mathbb{R}^{n+1}$ $(n\ge 2)$, for any embedded hypersurface $\Sigma\subset K$ with boundary $\partial\Sigma\subset \partial K$ satisfying certain contact angle condition, there holds $$\frac1{n+1}\int_{\Sigma}\vert{H}\vert^n{\rm d}A\ge{\rm AVR}(K)\vert\mathbb{B}^{n+1}\vert.$$ Moreover, equality holds if and only if $\Sigma$ is a part of a sphere and $K\setminus\Omega$ is a part of the solid cone determined by $\Sigma$. Here $\Omega$ is the bounded domain enclosed by $\Sigma$ and $\partial K$, $H$ is the normalized mean curvature of $\Sigma$, and ${\rm AVR}(K)$ is the asymptotic volume ratio of $K$. We also prove an anisotropic version of this Willmore-type inequality. As a special case, we obtain a Willmore-type inequality for anisotropic capillary hypersurfaces in a half-space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信