{"title":"无界凸集中的威尔莫尔型不等式","authors":"Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang","doi":"arxiv-2409.03321","DOIUrl":null,"url":null,"abstract":"In this paper we prove the following Willmore-type inequality: On an\nunbounded closed convex set $K\\subset\\mathbb{R}^{n+1}$ $(n\\ge 2)$, for any\nembedded hypersurface $\\Sigma\\subset K$ with boundary $\\partial\\Sigma\\subset\n\\partial K$ satisfying certain contact angle condition, there holds\n$$\\frac1{n+1}\\int_{\\Sigma}\\vert{H}\\vert^n{\\rm d}A\\ge{\\rm\nAVR}(K)\\vert\\mathbb{B}^{n+1}\\vert.$$ Moreover, equality holds if and only if\n$\\Sigma$ is a part of a sphere and $K\\setminus\\Omega$ is a part of the solid\ncone determined by $\\Sigma$. Here $\\Omega$ is the bounded domain enclosed by\n$\\Sigma$ and $\\partial K$, $H$ is the normalized mean curvature of $\\Sigma$,\nand ${\\rm AVR}(K)$ is the asymptotic volume ratio of $K$. We also prove an\nanisotropic version of this Willmore-type inequality. As a special case, we\nobtain a Willmore-type inequality for anisotropic capillary hypersurfaces in a\nhalf-space.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Willmore-type inequality in unbounded convex sets\",\"authors\":\"Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang\",\"doi\":\"arxiv-2409.03321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove the following Willmore-type inequality: On an\\nunbounded closed convex set $K\\\\subset\\\\mathbb{R}^{n+1}$ $(n\\\\ge 2)$, for any\\nembedded hypersurface $\\\\Sigma\\\\subset K$ with boundary $\\\\partial\\\\Sigma\\\\subset\\n\\\\partial K$ satisfying certain contact angle condition, there holds\\n$$\\\\frac1{n+1}\\\\int_{\\\\Sigma}\\\\vert{H}\\\\vert^n{\\\\rm d}A\\\\ge{\\\\rm\\nAVR}(K)\\\\vert\\\\mathbb{B}^{n+1}\\\\vert.$$ Moreover, equality holds if and only if\\n$\\\\Sigma$ is a part of a sphere and $K\\\\setminus\\\\Omega$ is a part of the solid\\ncone determined by $\\\\Sigma$. Here $\\\\Omega$ is the bounded domain enclosed by\\n$\\\\Sigma$ and $\\\\partial K$, $H$ is the normalized mean curvature of $\\\\Sigma$,\\nand ${\\\\rm AVR}(K)$ is the asymptotic volume ratio of $K$. We also prove an\\nanisotropic version of this Willmore-type inequality. As a special case, we\\nobtain a Willmore-type inequality for anisotropic capillary hypersurfaces in a\\nhalf-space.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we prove the following Willmore-type inequality: On an
unbounded closed convex set $K\subset\mathbb{R}^{n+1}$ $(n\ge 2)$, for any
embedded hypersurface $\Sigma\subset K$ with boundary $\partial\Sigma\subset
\partial K$ satisfying certain contact angle condition, there holds
$$\frac1{n+1}\int_{\Sigma}\vert{H}\vert^n{\rm d}A\ge{\rm
AVR}(K)\vert\mathbb{B}^{n+1}\vert.$$ Moreover, equality holds if and only if
$\Sigma$ is a part of a sphere and $K\setminus\Omega$ is a part of the solid
cone determined by $\Sigma$. Here $\Omega$ is the bounded domain enclosed by
$\Sigma$ and $\partial K$, $H$ is the normalized mean curvature of $\Sigma$,
and ${\rm AVR}(K)$ is the asymptotic volume ratio of $K$. We also prove an
anisotropic version of this Willmore-type inequality. As a special case, we
obtain a Willmore-type inequality for anisotropic capillary hypersurfaces in a
half-space.