毛细管表面的单调性公式

Guofang Wang, Chao Xia, Xuwen Zhang
{"title":"毛细管表面的单调性公式","authors":"Guofang Wang, Chao Xia, Xuwen Zhang","doi":"arxiv-2409.03314","DOIUrl":null,"url":null,"abstract":"In this paper, we establish monotonicity formulas for capillary surfaces in\nthe half-space $\\mathbb{R}^3_+$ and in the unit ball $\\mathbb{B}^3$ and extend\nthe result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.\n\\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})\nfor surfaces with free boundary. As applications, we obtain Li-Yau-type\ninequalities for the Willmore energy of capillary surfaces, and extend\nFraser-Schoen's optimal area estimate for minimal free boundary surfaces in\n$\\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.\n\\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})\nto the capillary setting, which is different to another optimal area estimate\nproved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.\n\\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity Formulas for Capillary Surfaces\",\"authors\":\"Guofang Wang, Chao Xia, Xuwen Zhang\",\"doi\":\"arxiv-2409.03314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish monotonicity formulas for capillary surfaces in\\nthe half-space $\\\\mathbb{R}^3_+$ and in the unit ball $\\\\mathbb{B}^3$ and extend\\nthe result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.\\n\\\\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})\\nfor surfaces with free boundary. As applications, we obtain Li-Yau-type\\ninequalities for the Willmore energy of capillary surfaces, and extend\\nFraser-Schoen's optimal area estimate for minimal free boundary surfaces in\\n$\\\\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.\\n\\\\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})\\nto the capillary setting, which is different to another optimal area estimate\\nproved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.\\n\\\\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了半空间 $\mathbb{R}^3_+$ 和单位球 $\mathbb{B}^3$ 中毛细管表面的单调性公式,并扩展了 Volkmann 的结果(Comm.Anal.Geom.24(2016), no.1, 195~221.\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})for surfaces with free boundary.作为应用,我们得到了毛细管表面的 Willmore 能量的 Li-Yau-typeinequalities,并将 Fraser-Schoen 对$\mathbb{B}^3$中最小自由边界表面的最优面积估计(Adv. Math.226(2011), no.5, 4011~4030.\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007} )扩展到毛细管环境,这与 Brendle 所证明的另一个最优面积估计不同(Ann.Fac.(6)32(2023), no.1, 179~201.\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity Formulas for Capillary Surfaces
In this paper, we establish monotonicity formulas for capillary surfaces in the half-space $\mathbb{R}^3_+$ and in the unit ball $\mathbb{B}^3$ and extend the result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221. \href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7}) for surfaces with free boundary. As applications, we obtain Li-Yau-type inequalities for the Willmore energy of capillary surfaces, and extend Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in $\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030. \href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007}) to the capillary setting, which is different to another optimal area estimate proved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201. \href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信