{"title":"毛细管表面的单调性公式","authors":"Guofang Wang, Chao Xia, Xuwen Zhang","doi":"arxiv-2409.03314","DOIUrl":null,"url":null,"abstract":"In this paper, we establish monotonicity formulas for capillary surfaces in\nthe half-space $\\mathbb{R}^3_+$ and in the unit ball $\\mathbb{B}^3$ and extend\nthe result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.\n\\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})\nfor surfaces with free boundary. As applications, we obtain Li-Yau-type\ninequalities for the Willmore energy of capillary surfaces, and extend\nFraser-Schoen's optimal area estimate for minimal free boundary surfaces in\n$\\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.\n\\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})\nto the capillary setting, which is different to another optimal area estimate\nproved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.\n\\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity Formulas for Capillary Surfaces\",\"authors\":\"Guofang Wang, Chao Xia, Xuwen Zhang\",\"doi\":\"arxiv-2409.03314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish monotonicity formulas for capillary surfaces in\\nthe half-space $\\\\mathbb{R}^3_+$ and in the unit ball $\\\\mathbb{B}^3$ and extend\\nthe result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.\\n\\\\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})\\nfor surfaces with free boundary. As applications, we obtain Li-Yau-type\\ninequalities for the Willmore energy of capillary surfaces, and extend\\nFraser-Schoen's optimal area estimate for minimal free boundary surfaces in\\n$\\\\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.\\n\\\\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})\\nto the capillary setting, which is different to another optimal area estimate\\nproved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.\\n\\\\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we establish monotonicity formulas for capillary surfaces in
the half-space $\mathbb{R}^3_+$ and in the unit ball $\mathbb{B}^3$ and extend
the result of Volkmann (Comm. Anal. Geom.24(2016), no.1, 195~221.
\href{https://doi.org/10.4310/CAG.2016.v24.n1.a7}{https://doi.org/10.4310/CAG.2016.v24.n1.a7})
for surfaces with free boundary. As applications, we obtain Li-Yau-type
inequalities for the Willmore energy of capillary surfaces, and extend
Fraser-Schoen's optimal area estimate for minimal free boundary surfaces in
$\mathbb{B}^3$ (Adv. Math.226(2011), no.5, 4011~4030.
\href{https://doi.org/10.1016/j.aim.2010.11.007}{https://doi.org/10.1016/j.aim.2010.11.007})
to the capillary setting, which is different to another optimal area estimate
proved by Brendle (Ann. Fac. Sci. Toulouse Math. (6)32(2023), no.1, 179~201.
\href{https://doi.org/10.5802/afst.1734}{https://doi.org/10.5802/afst.1734}).