$mathbb{B}_7$ 家族的 ALC 成员上的 $G_2$- nstantons

Jakob Stein, Matt Turner
{"title":"$mathbb{B}_7$ 家族的 ALC 成员上的 $G_2$- nstantons","authors":"Jakob Stein, Matt Turner","doi":"arxiv-2409.03886","DOIUrl":null,"url":null,"abstract":"Using co-homogeneity one symmetries, we construct a two-parameter family of\nnon-abelian $G_2$-instantons on every member of the asymptotically locally\nconical $\\mathbb{B}_7$-family of $G_2$-metrics on $S^3 \\times \\mathbb{R}^4 $,\nand classify the resulting solutions. These solutions can be described as\nperturbations of a one-parameter family of abelian instantons, arising from the\nKilling vector-field generating the asymptotic circle fibre. Generically, these\nperturbations decay exponentially to the model, but we find a one-parameter\nfamily of instantons with polynomial decay. Moreover, we relate the\ntwo-parameter family to a lift of an explicit two-parameter family of\nanti-self-dual instantons on Taub-NUT $\\mathbb{R}^4$, fibred over $S^3$ in an\nadiabatic limit.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$G_2$-instantons on the ALC members of the $\\\\mathbb{B}_7$ family\",\"authors\":\"Jakob Stein, Matt Turner\",\"doi\":\"arxiv-2409.03886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using co-homogeneity one symmetries, we construct a two-parameter family of\\nnon-abelian $G_2$-instantons on every member of the asymptotically locally\\nconical $\\\\mathbb{B}_7$-family of $G_2$-metrics on $S^3 \\\\times \\\\mathbb{R}^4 $,\\nand classify the resulting solutions. These solutions can be described as\\nperturbations of a one-parameter family of abelian instantons, arising from the\\nKilling vector-field generating the asymptotic circle fibre. Generically, these\\nperturbations decay exponentially to the model, but we find a one-parameter\\nfamily of instantons with polynomial decay. Moreover, we relate the\\ntwo-parameter family to a lift of an explicit two-parameter family of\\nanti-self-dual instantons on Taub-NUT $\\\\mathbb{R}^4$, fibred over $S^3$ in an\\nadiabatic limit.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用共偶性一对称性,我们在$S^3 \times \mathbb{R}^4 $上的$G_2$-metrics的渐近局部共轭$\mathbb{B}_7$-family的每一个成员上构建了非阿贝尔$G_2$-瞬子的双参数族,并对由此产生的解进行了分类。这些解可以描述为产生渐近圆纤维的基林向量场对无性瞬子单参数族的扰动。一般来说,这些扰动对模型呈指数衰减,但我们发现了一个具有多项式衰减的单参数瞬子族。此外,我们把这个二参数族与在无绝热极限下,Taub-NUT $/mathbb{R}^4$上的反自双瞬子的一个显式二参数族的提升联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$G_2$-instantons on the ALC members of the $\mathbb{B}_7$ family
Using co-homogeneity one symmetries, we construct a two-parameter family of non-abelian $G_2$-instantons on every member of the asymptotically locally conical $\mathbb{B}_7$-family of $G_2$-metrics on $S^3 \times \mathbb{R}^4 $, and classify the resulting solutions. These solutions can be described as perturbations of a one-parameter family of abelian instantons, arising from the Killing vector-field generating the asymptotic circle fibre. Generically, these perturbations decay exponentially to the model, but we find a one-parameter family of instantons with polynomial decay. Moreover, we relate the two-parameter family to a lift of an explicit two-parameter family of anti-self-dual instantons on Taub-NUT $\mathbb{R}^4$, fibred over $S^3$ in an adiabatic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信