论保形域中自由边界最小子曼形体的稳定性

Alcides de Carvalho, Roney Santos, Federico Trinca
{"title":"论保形域中自由边界最小子曼形体的稳定性","authors":"Alcides de Carvalho, Roney Santos, Federico Trinca","doi":"arxiv-2409.03943","DOIUrl":null,"url":null,"abstract":"Given a $n$-dimensional Riemannian manifold with non-negative sectional\ncurvatures and convex boundary, that is conformal to an Euclidean convex\nbounded domain, we show that it does not contain any compact stable free\nboundary minimal submanifold of dimension $2\\leq k\\leq n-2$, provided that\neither the boundary is strictly convex with respect to any of the two metrics\nor the sectional curvatures are strictly positive.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability of free boundary minimal submanifolds in conformal domains\",\"authors\":\"Alcides de Carvalho, Roney Santos, Federico Trinca\",\"doi\":\"arxiv-2409.03943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a $n$-dimensional Riemannian manifold with non-negative sectional\\ncurvatures and convex boundary, that is conformal to an Euclidean convex\\nbounded domain, we show that it does not contain any compact stable free\\nboundary minimal submanifold of dimension $2\\\\leq k\\\\leq n-2$, provided that\\neither the boundary is strictly convex with respect to any of the two metrics\\nor the sectional curvatures are strictly positive.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有非负截面曲率和凸边界的 $n$ 维黎曼流形,它与欧几里得凸界域保角,我们证明它不包含任何维数为 $2\leq k\leq n-2$ 的紧凑稳定自由边界最小子流形,条件是边界相对于两个度量中的任何一个是严格凸的,或者截面曲率是严格正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of free boundary minimal submanifolds in conformal domains
Given a $n$-dimensional Riemannian manifold with non-negative sectional curvatures and convex boundary, that is conformal to an Euclidean convex bounded domain, we show that it does not contain any compact stable free boundary minimal submanifold of dimension $2\leq k\leq n-2$, provided that either the boundary is strictly convex with respect to any of the two metrics or the sectional curvatures are strictly positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信