紧凑整体性 $\mathrm{G}_2$ 流形不必是形式的

Lucía Martín-Merchán
{"title":"紧凑整体性 $\\mathrm{G}_2$ 流形不必是形式的","authors":"Lucía Martín-Merchán","doi":"arxiv-2409.04362","DOIUrl":null,"url":null,"abstract":"We construct a compact, simply connected manifold with holonomy\n$\\mathrm{G}_2$ that is non-formal. We use the construction method of compact\ntorsion-free $\\mathrm{G}_2$ manifolds developed by D.D. Joyce and S.\nKarigiannis. A non-vanishing triple Massey product is obtained by arranging the\nsingular locus in a particular configuration.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact holonomy $\\\\mathrm{G}_2$ manifolds need not be formal\",\"authors\":\"Lucía Martín-Merchán\",\"doi\":\"arxiv-2409.04362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a compact, simply connected manifold with holonomy\\n$\\\\mathrm{G}_2$ that is non-formal. We use the construction method of compact\\ntorsion-free $\\\\mathrm{G}_2$ manifolds developed by D.D. Joyce and S.\\nKarigiannis. A non-vanishing triple Massey product is obtained by arranging the\\nsingular locus in a particular configuration.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了一个紧凑的、简单连接的、具有非形式整体性$mathrm{G}_2$流形。我们使用了乔伊斯(D.D. Joyce)和卡里吉安尼斯(S.Karigiannis)开发的紧凑无扭转 $\mathrm{G}_2$ 流形的构造方法。通过以特定配置排列星形位点,可以得到一个非凡的三马西积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact holonomy $\mathrm{G}_2$ manifolds need not be formal
We construct a compact, simply connected manifold with holonomy $\mathrm{G}_2$ that is non-formal. We use the construction method of compact torsion-free $\mathrm{G}_2$ manifolds developed by D.D. Joyce and S. Karigiannis. A non-vanishing triple Massey product is obtained by arranging the singular locus in a particular configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信