紧凑复流形上全非线性椭圆方程的尖锐 $\mathrm{L}^\infty$ 估计值

Yuxiang Qiao
{"title":"紧凑复流形上全非线性椭圆方程的尖锐 $\\mathrm{L}^\\infty$ 估计值","authors":"Yuxiang Qiao","doi":"arxiv-2409.05157","DOIUrl":null,"url":null,"abstract":"We study the sharp $\\mathrm{L}^\\infty$ estimates for fully non-linear\nelliptic equations on compact complex manifolds. For the case of K\\\"ahler\nmanifolds, we prove that the oscillation of any admissible solution to a\ndegenerate fully non-linear elliptic equation satisfying several structural\nconditions can be controlled by the\n$\\mathrm{L}^1(\\log\\mathrm{L})^n(\\log\\log\\mathrm{L})^r(r>n)$ norm of the\nright-hand function (in a regularized form). This result improves that of\nGuo-Phong-Tong. In addition to their method of comparison with auxiliary\ncomplex Monge-Amp\\`ere equations, our proof relies on an inequality of\nH\\\"older-Young type and an iteration lemma of De Giorgi type. For the case of\nHermitian manifolds with non-degenerate background metrics, we prove a similar\n$\\mathrm{L}^\\infty$ estimate which improves that of Guo-Phong. An explicit\nexample is constucted to show that the $\\mathrm{L}^\\infty$ estimates given here\nmay fail when $r\\leqslant n-1$. The construction relies on a gluing lemma of\nsmooth, radial, strictly plurisubharmonic functions.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp $\\\\mathrm{L}^\\\\infty$ estimates for fully non-linear elliptic equations on compact complex manifolds\",\"authors\":\"Yuxiang Qiao\",\"doi\":\"arxiv-2409.05157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the sharp $\\\\mathrm{L}^\\\\infty$ estimates for fully non-linear\\nelliptic equations on compact complex manifolds. For the case of K\\\\\\\"ahler\\nmanifolds, we prove that the oscillation of any admissible solution to a\\ndegenerate fully non-linear elliptic equation satisfying several structural\\nconditions can be controlled by the\\n$\\\\mathrm{L}^1(\\\\log\\\\mathrm{L})^n(\\\\log\\\\log\\\\mathrm{L})^r(r>n)$ norm of the\\nright-hand function (in a regularized form). This result improves that of\\nGuo-Phong-Tong. In addition to their method of comparison with auxiliary\\ncomplex Monge-Amp\\\\`ere equations, our proof relies on an inequality of\\nH\\\\\\\"older-Young type and an iteration lemma of De Giorgi type. For the case of\\nHermitian manifolds with non-degenerate background metrics, we prove a similar\\n$\\\\mathrm{L}^\\\\infty$ estimate which improves that of Guo-Phong. An explicit\\nexample is constucted to show that the $\\\\mathrm{L}^\\\\infty$ estimates given here\\nmay fail when $r\\\\leqslant n-1$. The construction relies on a gluing lemma of\\nsmooth, radial, strictly plurisubharmonic functions.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了紧凑复流形上完全非线性椭圆方程的尖锐 $\mathrm{L}^\infty$ 估计值。对于 K\"ahlermanifolds 的情况,我们证明了满足几个结构条件的全非线性椭圆方程的任何可接受解的振荡都可以由右手函数(正则化形式)的$mathrm{L}^1(\log\mathrm{L})^n(\log\mathrm{L})^r(r>n)$ 准则控制。这一结果改进了郭芳栋的结果。除了他们与辅助复数 Monge-Amp\`ere 方程的比较方法之外,我们的证明还依赖于一个老杨式的不等式和一个德乔治式的迭代 Lemma。对于具有非退化背景度量的ermitian流形,我们证明了一个类似的$\mathrm{L}^\infty$估计,它改进了Guo-Phong的估计。我们举了一个具体的例子来说明,当 $r\leqslant n-1$ 时,这里给出的 $\mathrm{L}^\infty$ 估计可能会失效。这一构造依赖于光滑的、径向的、严格的诸次谐函数的胶合定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp $\mathrm{L}^\infty$ estimates for fully non-linear elliptic equations on compact complex manifolds
We study the sharp $\mathrm{L}^\infty$ estimates for fully non-linear elliptic equations on compact complex manifolds. For the case of K\"ahler manifolds, we prove that the oscillation of any admissible solution to a degenerate fully non-linear elliptic equation satisfying several structural conditions can be controlled by the $\mathrm{L}^1(\log\mathrm{L})^n(\log\log\mathrm{L})^r(r>n)$ norm of the right-hand function (in a regularized form). This result improves that of Guo-Phong-Tong. In addition to their method of comparison with auxiliary complex Monge-Amp\`ere equations, our proof relies on an inequality of H\"older-Young type and an iteration lemma of De Giorgi type. For the case of Hermitian manifolds with non-degenerate background metrics, we prove a similar $\mathrm{L}^\infty$ estimate which improves that of Guo-Phong. An explicit example is constucted to show that the $\mathrm{L}^\infty$ estimates given here may fail when $r\leqslant n-1$. The construction relies on a gluing lemma of smooth, radial, strictly plurisubharmonic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信