关于欧几里得空间稳定最小超曲面的一些估计

Luen-Fai Tam
{"title":"关于欧几里得空间稳定最小超曲面的一些估计","authors":"Luen-Fai Tam","doi":"arxiv-2409.04947","DOIUrl":null,"url":null,"abstract":"We derive some estimates for stable minimal hypersurfaces in $\\R^{n+1}$. The\nestimates are related to recent proofs of Bernstein theorems for complete\nstable minimal hypersurfaces in $\\R^{n+1}$ for $3\\le n\\le 5$ by Chodosh-Li,\nChodosh-Li-Minter-Stryker and Mazet. In particular, the estimates indicate that\nthe methods in their proofs may not work for $n=6$, which is observed also by\nAntonelli-Xu. The method of derivation in this work might also be applied to\nother problems.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some estimates on stable minimal hypersurfaces in Euclidean space\",\"authors\":\"Luen-Fai Tam\",\"doi\":\"arxiv-2409.04947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive some estimates for stable minimal hypersurfaces in $\\\\R^{n+1}$. The\\nestimates are related to recent proofs of Bernstein theorems for complete\\nstable minimal hypersurfaces in $\\\\R^{n+1}$ for $3\\\\le n\\\\le 5$ by Chodosh-Li,\\nChodosh-Li-Minter-Stryker and Mazet. In particular, the estimates indicate that\\nthe methods in their proofs may not work for $n=6$, which is observed also by\\nAntonelli-Xu. The method of derivation in this work might also be applied to\\nother problems.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了 $\R^{n+1}$ 中稳定的最小超曲面的一些估计值。这些估计值与 Chodosh-Li、Chodosh-Li-Minter-Stryker 和 Mazet 最近证明的针对 $le n\le 5$ 的 $\R^{n+1}$ 中可完备检验的最小超曲面的伯恩斯坦定理有关。特别是,估计结果表明,他们证明中的方法对 $n=6$ 可能不起作用,安东尼-徐(Antonelli-Xu)也观察到了这一点。这项工作中的推导方法也可应用于其他问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some estimates on stable minimal hypersurfaces in Euclidean space
We derive some estimates for stable minimal hypersurfaces in $\R^{n+1}$. The estimates are related to recent proofs of Bernstein theorems for complete stable minimal hypersurfaces in $\R^{n+1}$ for $3\le n\le 5$ by Chodosh-Li, Chodosh-Li-Minter-Stryker and Mazet. In particular, the estimates indicate that the methods in their proofs may not work for $n=6$, which is observed also by Antonelli-Xu. The method of derivation in this work might also be applied to other problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信