Luca Benatti, Carlo Mantegazza, Francesca Oronzio, Alessandra Pluda
{"title":"关于里奇夹角三漫游的说明","authors":"Luca Benatti, Carlo Mantegazza, Francesca Oronzio, Alessandra Pluda","doi":"arxiv-2409.05078","DOIUrl":null,"url":null,"abstract":"Let $(M, g)$ be a complete, connected, non-compact Riemannian $3$-manifold.\nSuppose that $(M,g)$ satisfies the Ricci--pinching condition\n$\\mathrm{Ric}\\geq\\varepsilon\\mathrm{R} g$ for some $\\varepsilon>0$, where\n$\\mathrm{Ric}$ and $\\mathrm{R}$ are the Ricci tensor and scalar curvature,\nrespectively. In this short note, we give an alternative proof based on\npotential theory of the fact that if $(M,g)$ has Euclidean volume growth, then\nit is flat. Deruelle-Schulze-Simon and by Huisken-K\\\"{o}rber have already shown\nthis result and together with the contributions by Lott and Lee-Topping led to\na proof of the so-called Hamilton's pinching conjecture.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Ricci-pinched three-manifolds\",\"authors\":\"Luca Benatti, Carlo Mantegazza, Francesca Oronzio, Alessandra Pluda\",\"doi\":\"arxiv-2409.05078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(M, g)$ be a complete, connected, non-compact Riemannian $3$-manifold.\\nSuppose that $(M,g)$ satisfies the Ricci--pinching condition\\n$\\\\mathrm{Ric}\\\\geq\\\\varepsilon\\\\mathrm{R} g$ for some $\\\\varepsilon>0$, where\\n$\\\\mathrm{Ric}$ and $\\\\mathrm{R}$ are the Ricci tensor and scalar curvature,\\nrespectively. In this short note, we give an alternative proof based on\\npotential theory of the fact that if $(M,g)$ has Euclidean volume growth, then\\nit is flat. Deruelle-Schulze-Simon and by Huisken-K\\\\\\\"{o}rber have already shown\\nthis result and together with the contributions by Lott and Lee-Topping led to\\na proof of the so-called Hamilton's pinching conjecture.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
假设$(M,g)$满足里奇夹角条件$\mathrm{Ric}\geq\varepsilon\mathrm{R} g$ for some $\varepsilon>0$, 其中$\mathrm{Ric}$ 和$\mathrm{R}$ 分别是里奇张量和标量曲率。在这篇短文中,我们基于势论给出了另一种证明,即如果 $(M,g)$ 具有欧几里得体积增长,那么它就是平坦的。Deruelle-Schulze-Simon和Huisken-K"{o}rber已经证明了这一结果,再加上Lott和Lee-Topping的贡献,导致了所谓汉密尔顿捏合猜想的证明。
Let $(M, g)$ be a complete, connected, non-compact Riemannian $3$-manifold.
Suppose that $(M,g)$ satisfies the Ricci--pinching condition
$\mathrm{Ric}\geq\varepsilon\mathrm{R} g$ for some $\varepsilon>0$, where
$\mathrm{Ric}$ and $\mathrm{R}$ are the Ricci tensor and scalar curvature,
respectively. In this short note, we give an alternative proof based on
potential theory of the fact that if $(M,g)$ has Euclidean volume growth, then
it is flat. Deruelle-Schulze-Simon and by Huisken-K\"{o}rber have already shown
this result and together with the contributions by Lott and Lee-Topping led to
a proof of the so-called Hamilton's pinching conjecture.