精确无发散向量场的李代数的通用中心扩展

Bas Janssens, Leonid Ryvkin, Cornelia Vizman
{"title":"精确无发散向量场的李代数的通用中心扩展","authors":"Bas Janssens, Leonid Ryvkin, Cornelia Vizman","doi":"arxiv-2409.05182","DOIUrl":null,"url":null,"abstract":"We construct the universal central extension of the Lie algebra of exact\ndivergence-free vector fields, proving a conjecture by Claude Roger from 1995.\nThe proof relies on the analysis of a Leibniz algebra that underlies these\nvector fields. As an application, we construct the universal central extension\nof the (infinite-dimensional) Lie group of exact divergence-free\ndiffeomorphisms of a compact 3-dimensional manifold.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal central extension of the Lie algebra of exact divergence-free vector fields\",\"authors\":\"Bas Janssens, Leonid Ryvkin, Cornelia Vizman\",\"doi\":\"arxiv-2409.05182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct the universal central extension of the Lie algebra of exact\\ndivergence-free vector fields, proving a conjecture by Claude Roger from 1995.\\nThe proof relies on the analysis of a Leibniz algebra that underlies these\\nvector fields. As an application, we construct the universal central extension\\nof the (infinite-dimensional) Lie group of exact divergence-free\\ndiffeomorphisms of a compact 3-dimensional manifold.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了精确无发散向量场的李代数的普遍中心扩展,证明了克劳德-罗杰(Claude Roger)在 1995 年提出的一个猜想。作为应用,我们构建了紧凑三维流形的精确无发散衍射的(无限维)李群的普遍中心扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal central extension of the Lie algebra of exact divergence-free vector fields
We construct the universal central extension of the Lie algebra of exact divergence-free vector fields, proving a conjecture by Claude Roger from 1995. The proof relies on the analysis of a Leibniz algebra that underlies these vector fields. As an application, we construct the universal central extension of the (infinite-dimensional) Lie group of exact divergence-free diffeomorphisms of a compact 3-dimensional manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信