{"title":"精确无发散向量场的李代数的通用中心扩展","authors":"Bas Janssens, Leonid Ryvkin, Cornelia Vizman","doi":"arxiv-2409.05182","DOIUrl":null,"url":null,"abstract":"We construct the universal central extension of the Lie algebra of exact\ndivergence-free vector fields, proving a conjecture by Claude Roger from 1995.\nThe proof relies on the analysis of a Leibniz algebra that underlies these\nvector fields. As an application, we construct the universal central extension\nof the (infinite-dimensional) Lie group of exact divergence-free\ndiffeomorphisms of a compact 3-dimensional manifold.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal central extension of the Lie algebra of exact divergence-free vector fields\",\"authors\":\"Bas Janssens, Leonid Ryvkin, Cornelia Vizman\",\"doi\":\"arxiv-2409.05182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct the universal central extension of the Lie algebra of exact\\ndivergence-free vector fields, proving a conjecture by Claude Roger from 1995.\\nThe proof relies on the analysis of a Leibniz algebra that underlies these\\nvector fields. As an application, we construct the universal central extension\\nof the (infinite-dimensional) Lie group of exact divergence-free\\ndiffeomorphisms of a compact 3-dimensional manifold.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal central extension of the Lie algebra of exact divergence-free vector fields
We construct the universal central extension of the Lie algebra of exact
divergence-free vector fields, proving a conjecture by Claude Roger from 1995.
The proof relies on the analysis of a Leibniz algebra that underlies these
vector fields. As an application, we construct the universal central extension
of the (infinite-dimensional) Lie group of exact divergence-free
diffeomorphisms of a compact 3-dimensional manifold.