会议图的曲率和局部匹配及扩展

Kaizhe Chen, Shiping Liu, Heng Zhang
{"title":"会议图的曲率和局部匹配及扩展","authors":"Kaizhe Chen, Shiping Liu, Heng Zhang","doi":"arxiv-2409.06418","DOIUrl":null,"url":null,"abstract":"We confirm a conjecture of Bonini et. al. on the precise Lin-Lu-Yau curvature\nvalues of conference graphs, i.e., strongly regular graphs with parameters\n$(4\\gamma+1,2\\gamma,\\gamma-1,\\gamma)$, with $\\gamma\\geq 2$. Our method only\ndepends on the parameter relations and applies to more general classes of amply\nregular graphs. In particular, we develop a new combinatorial method for\nshowing the existence of local perfect matchings. A key observation is that\ncounting common neighbors leads to useful quadratic polynomials. Our result\nalso leads to an interesting number theoretic consequence on quadratic\nresidues.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature and local matchings of conference graphs and extensions\",\"authors\":\"Kaizhe Chen, Shiping Liu, Heng Zhang\",\"doi\":\"arxiv-2409.06418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We confirm a conjecture of Bonini et. al. on the precise Lin-Lu-Yau curvature\\nvalues of conference graphs, i.e., strongly regular graphs with parameters\\n$(4\\\\gamma+1,2\\\\gamma,\\\\gamma-1,\\\\gamma)$, with $\\\\gamma\\\\geq 2$. Our method only\\ndepends on the parameter relations and applies to more general classes of amply\\nregular graphs. In particular, we develop a new combinatorial method for\\nshowing the existence of local perfect matchings. A key observation is that\\ncounting common neighbors leads to useful quadratic polynomials. Our result\\nalso leads to an interesting number theoretic consequence on quadratic\\nresidues.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证实了Bonini等人关于会议图(即参数为$(4\gamma+1,2\gamma,\gamma-1,\gamma)$的强规则图,参数为$\gamma\geq 2$)的精确Lin-Lu-Yau曲率值的猜想。我们的方法只依赖于参数关系,并适用于更一般的充规则图类。特别是,我们开发了一种新的组合方法来显示局部完全匹配的存在。一个关键的观察结果是,计算共同邻接会得到有用的二次多项式。我们的结果还引出了关于二次残差的一个有趣的数论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature and local matchings of conference graphs and extensions
We confirm a conjecture of Bonini et. al. on the precise Lin-Lu-Yau curvature values of conference graphs, i.e., strongly regular graphs with parameters $(4\gamma+1,2\gamma,\gamma-1,\gamma)$, with $\gamma\geq 2$. Our method only depends on the parameter relations and applies to more general classes of amply regular graphs. In particular, we develop a new combinatorial method for showing the existence of local perfect matchings. A key observation is that counting common neighbors leads to useful quadratic polynomials. Our result also leads to an interesting number theoretic consequence on quadratic residues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信