校准锥的严格稳定性

Bryan Dimler, Jooho Lee
{"title":"校准锥的严格稳定性","authors":"Bryan Dimler, Jooho Lee","doi":"arxiv-2409.06094","DOIUrl":null,"url":null,"abstract":"We study the strict stability of calibrated cones with an isolated\nsingularity. For special Lagrangian cones and coassociative cones, we prove the\nstrict stability. In the complex case, we give non-strictly stable examples.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strict stability of calibrated cones\",\"authors\":\"Bryan Dimler, Jooho Lee\",\"doi\":\"arxiv-2409.06094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the strict stability of calibrated cones with an isolated\\nsingularity. For special Lagrangian cones and coassociative cones, we prove the\\nstrict stability. In the complex case, we give non-strictly stable examples.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有孤立奇异性的校准锥的严格稳定性。对于特殊的拉格朗日锥和共轭锥,我们证明了其严格稳定性。在复数情况下,我们给出了非严格稳定的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strict stability of calibrated cones
We study the strict stability of calibrated cones with an isolated singularity. For special Lagrangian cones and coassociative cones, we prove the strict stability. In the complex case, we give non-strictly stable examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信