{"title":"关于具有闭合 \\texorpdfstring{$ν$}{G2} 结构的两步无常域的\\texorpdfstring{$ν$}{nu}不变量","authors":"Anna Fino, Gueo Grantcharov, Giovanni Russo","doi":"arxiv-2409.06870","DOIUrl":null,"url":null,"abstract":"For every non-vanishing spinor field on a Riemannian $7$-manifold, Crowley,\nGoette, and Nordstr\\\"om introduced the so-called $\\nu$-invariant. This is an\ninteger modulo $48$, and can be defined in terms of Mathai--Quillen currents,\nharmonic spinors, and $\\eta$-invariants of spin Dirac and odd-signature\noperator. We compute these data for the compact two-step nilmanifolds admitting\ninvariant closed $\\mathrm G_2$-structures, in particular determining the\nharmonic spinors and relevant symmetries of the spectrum of the spin Dirac\noperator. We then deduce the vanishing of the $\\nu$-invariants.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the \\\\texorpdfstring{$ν$}{nu}-invariant of two-step nilmanifolds with closed \\\\texorpdfstring{$\\\\mathrm G_2$}{G2}-structure\",\"authors\":\"Anna Fino, Gueo Grantcharov, Giovanni Russo\",\"doi\":\"arxiv-2409.06870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every non-vanishing spinor field on a Riemannian $7$-manifold, Crowley,\\nGoette, and Nordstr\\\\\\\"om introduced the so-called $\\\\nu$-invariant. This is an\\ninteger modulo $48$, and can be defined in terms of Mathai--Quillen currents,\\nharmonic spinors, and $\\\\eta$-invariants of spin Dirac and odd-signature\\noperator. We compute these data for the compact two-step nilmanifolds admitting\\ninvariant closed $\\\\mathrm G_2$-structures, in particular determining the\\nharmonic spinors and relevant symmetries of the spectrum of the spin Dirac\\noperator. We then deduce the vanishing of the $\\\\nu$-invariants.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the \texorpdfstring{$ν$}{nu}-invariant of two-step nilmanifolds with closed \texorpdfstring{$\mathrm G_2$}{G2}-structure
For every non-vanishing spinor field on a Riemannian $7$-manifold, Crowley,
Goette, and Nordstr\"om introduced the so-called $\nu$-invariant. This is an
integer modulo $48$, and can be defined in terms of Mathai--Quillen currents,
harmonic spinors, and $\eta$-invariants of spin Dirac and odd-signature
operator. We compute these data for the compact two-step nilmanifolds admitting
invariant closed $\mathrm G_2$-structures, in particular determining the
harmonic spinors and relevant symmetries of the spectrum of the spin Dirac
operator. We then deduce the vanishing of the $\nu$-invariants.