紧凑大地轨道流形和$\SU(5)/\s(\U(2)\times \U(2))$的g.o.条件回顾

Andreas Arvanitoyeorgos, Nikolaos Panagiotis Souris, Marina Statha
{"title":"紧凑大地轨道流形和$\\SU(5)/\\s(\\U(2)\\times \\U(2))$的g.o.条件回顾","authors":"Andreas Arvanitoyeorgos, Nikolaos Panagiotis Souris, Marina Statha","doi":"arxiv-2409.08247","DOIUrl":null,"url":null,"abstract":"Geodesic orbit manifolds (or g.o. manifolds) are those Riemannian manifolds\n$(M,g)$ whose geodesics are integral curves of Killing vector fields.\nEquivalently, there exists a Lie group $G$ of isometries of $(M,g)$ such that\nany geodesic $\\gamma$ has the simple form $\\gamma(t)=e^{tX}\\cdot p$, where $e$\ndenotes the exponential map on $G$. The classification of g.o. manifolds is a\nlongstanding problem in Riemannian geometry. In this brief survey, we present\nsome recent results and open questions on the subject focusing on the compact\ncase. In addition we study the geodesic orbit condition for the space\n$\\SU(5)/\\s(\\U(2)\\times \\U(2))$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"135 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of compact geodesic orbit manifolds and the g.o. condition for $\\\\SU(5)/\\\\s(\\\\U(2)\\\\times \\\\U(2))$\",\"authors\":\"Andreas Arvanitoyeorgos, Nikolaos Panagiotis Souris, Marina Statha\",\"doi\":\"arxiv-2409.08247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geodesic orbit manifolds (or g.o. manifolds) are those Riemannian manifolds\\n$(M,g)$ whose geodesics are integral curves of Killing vector fields.\\nEquivalently, there exists a Lie group $G$ of isometries of $(M,g)$ such that\\nany geodesic $\\\\gamma$ has the simple form $\\\\gamma(t)=e^{tX}\\\\cdot p$, where $e$\\ndenotes the exponential map on $G$. The classification of g.o. manifolds is a\\nlongstanding problem in Riemannian geometry. In this brief survey, we present\\nsome recent results and open questions on the subject focusing on the compact\\ncase. In addition we study the geodesic orbit condition for the space\\n$\\\\SU(5)/\\\\s(\\\\U(2)\\\\times \\\\U(2))$.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大地轨道流形(或g.o.流形)是指那些大地线是基林向量场积分曲线的黎曼流形$(M,g)$。等价地,存在一个$(M,g)$等距的李群$G$,使得任何大地线$\gamma$具有简单形式$\gamma(t)=e^{tX}\cdot p$,其中$e$表示$G$上的指数映射。g.o.流形的分类是黎曼几何中一直存在的问题。在这篇简短的综述中,我们将以紧凑情况为重点,介绍有关这一主题的一些最新成果和未决问题。此外,我们还研究了空间$\SU(5)/\s(\U(2)\times \U(2))$的大地轨道条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of compact geodesic orbit manifolds and the g.o. condition for $\SU(5)/\s(\U(2)\times \U(2))$
Geodesic orbit manifolds (or g.o. manifolds) are those Riemannian manifolds $(M,g)$ whose geodesics are integral curves of Killing vector fields. Equivalently, there exists a Lie group $G$ of isometries of $(M,g)$ such that any geodesic $\gamma$ has the simple form $\gamma(t)=e^{tX}\cdot p$, where $e$ denotes the exponential map on $G$. The classification of g.o. manifolds is a longstanding problem in Riemannian geometry. In this brief survey, we present some recent results and open questions on the subject focusing on the compact case. In addition we study the geodesic orbit condition for the space $\SU(5)/\s(\U(2)\times \U(2))$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信