Fernando Manfio, João Batista Marques dos Santos, João Paulo dos Santos, Joeri Van der Veken
{"title":"主曲率恒定的 $mathbb{S}^3 \\times \\mathbb{R}$ 和 $mathbb{H}^3 \\times \\mathbb{R}$ 的超曲面","authors":"Fernando Manfio, João Batista Marques dos Santos, João Paulo dos Santos, Joeri Van der Veken","doi":"arxiv-2409.07978","DOIUrl":null,"url":null,"abstract":"We classify the hypersurfaces of $\\mathbb{Q}^3\\times\\mathbb{R}$ with three\ndistinct constant principal curvatures, where $\\varepsilon \\in \\{1,-1\\}$ and\n$\\mathbb{Q}^3$ denotes the unit sphere $\\mathbb{S}^3$ if $\\varepsilon = 1$,\nwhereas it denotes the hyperbolic space $\\mathbb{H}^3$ if $\\varepsilon = -1$.\nWe show that they are cylinders over isoparametric surfaces in $\\mathbb{Q}^3$,\nfilling an intriguing gap in the existing literature. We also prove that the\nhypersurfaces with constant principal curvatures of\n$\\mathbb{Q}^3\\times\\mathbb{R}$ are isoparametric. Furthermore, we provide the\ncomplete classification of the extrinsically homogeneous hypersurfaces in\n$\\mathbb{Q}^3\\times\\mathbb{R}$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypersurfaces of $\\\\mathbb{S}^3 \\\\times \\\\mathbb{R}$ and $\\\\mathbb{H}^3 \\\\times \\\\mathbb{R}$ with constant principal curvatures\",\"authors\":\"Fernando Manfio, João Batista Marques dos Santos, João Paulo dos Santos, Joeri Van der Veken\",\"doi\":\"arxiv-2409.07978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the hypersurfaces of $\\\\mathbb{Q}^3\\\\times\\\\mathbb{R}$ with three\\ndistinct constant principal curvatures, where $\\\\varepsilon \\\\in \\\\{1,-1\\\\}$ and\\n$\\\\mathbb{Q}^3$ denotes the unit sphere $\\\\mathbb{S}^3$ if $\\\\varepsilon = 1$,\\nwhereas it denotes the hyperbolic space $\\\\mathbb{H}^3$ if $\\\\varepsilon = -1$.\\nWe show that they are cylinders over isoparametric surfaces in $\\\\mathbb{Q}^3$,\\nfilling an intriguing gap in the existing literature. We also prove that the\\nhypersurfaces with constant principal curvatures of\\n$\\\\mathbb{Q}^3\\\\times\\\\mathbb{R}$ are isoparametric. Furthermore, we provide the\\ncomplete classification of the extrinsically homogeneous hypersurfaces in\\n$\\\\mathbb{Q}^3\\\\times\\\\mathbb{R}$.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hypersurfaces of $\mathbb{S}^3 \times \mathbb{R}$ and $\mathbb{H}^3 \times \mathbb{R}$ with constant principal curvatures
We classify the hypersurfaces of $\mathbb{Q}^3\times\mathbb{R}$ with three
distinct constant principal curvatures, where $\varepsilon \in \{1,-1\}$ and
$\mathbb{Q}^3$ denotes the unit sphere $\mathbb{S}^3$ if $\varepsilon = 1$,
whereas it denotes the hyperbolic space $\mathbb{H}^3$ if $\varepsilon = -1$.
We show that they are cylinders over isoparametric surfaces in $\mathbb{Q}^3$,
filling an intriguing gap in the existing literature. We also prove that the
hypersurfaces with constant principal curvatures of
$\mathbb{Q}^3\times\mathbb{R}$ are isoparametric. Furthermore, we provide the
complete classification of the extrinsically homogeneous hypersurfaces in
$\mathbb{Q}^3\times\mathbb{R}$.