论m$修正共形矢量场的琐碎性

Rahul Poddar, Ramesh Sharma
{"title":"论m$修正共形矢量场的琐碎性","authors":"Rahul Poddar, Ramesh Sharma","doi":"arxiv-2409.07607","DOIUrl":null,"url":null,"abstract":"We prove that a compact Riemannian manifold $M$ does not admit any\nnon-trivial $m$-modified homothetic vector fields. In the corresponding case of\nan $m$-modified conformal vector field $V$, we establish an inequality that\nimplies the triviality of $V$. Further, we demonstrate that an affine Killing\n$m$-modified conformal vector field on a non-compact Riemannian manifold $M$\nmust be trivial. Finally, we show that an $m$-modified gradient conformal\nvector field is trivial under the assumptions of polynomial volume growth and\nconvergence to zero at infinity.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Triviality Of $m$-Modified Conformal Vector Fields\",\"authors\":\"Rahul Poddar, Ramesh Sharma\",\"doi\":\"arxiv-2409.07607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a compact Riemannian manifold $M$ does not admit any\\nnon-trivial $m$-modified homothetic vector fields. In the corresponding case of\\nan $m$-modified conformal vector field $V$, we establish an inequality that\\nimplies the triviality of $V$. Further, we demonstrate that an affine Killing\\n$m$-modified conformal vector field on a non-compact Riemannian manifold $M$\\nmust be trivial. Finally, we show that an $m$-modified gradient conformal\\nvector field is trivial under the assumptions of polynomial volume growth and\\nconvergence to zero at infinity.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,紧凑的黎曼流形 $M$ 不允许任何非三维的 $m$ 修正同调向量场。在$m$修正的共形向量场$V$的相应情况下,我们建立了一个不等式,证明了$V$的三性。此外,我们还证明了非紧密黎曼流形 $M$ 上的仿基林 $m$ 修正共形向量场必须是微不足道的。最后,我们证明了在多项式体积增长和无穷远处趋同于零的假设下,$m$修正梯度共形向量场是微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On The Triviality Of $m$-Modified Conformal Vector Fields
We prove that a compact Riemannian manifold $M$ does not admit any non-trivial $m$-modified homothetic vector fields. In the corresponding case of an $m$-modified conformal vector field $V$, we establish an inequality that implies the triviality of $V$. Further, we demonstrate that an affine Killing $m$-modified conformal vector field on a non-compact Riemannian manifold $M$ must be trivial. Finally, we show that an $m$-modified gradient conformal vector field is trivial under the assumptions of polynomial volume growth and convergence to zero at infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信