流形上正对称张量场的迈克尔-西蒙-索博列夫不等式

Yuting Wu, Chengyang Yi, Yu Zheng
{"title":"流形上正对称张量场的迈克尔-西蒙-索博列夫不等式","authors":"Yuting Wu, Chengyang Yi, Yu Zheng","doi":"arxiv-2409.08011","DOIUrl":null,"url":null,"abstract":"We prove the Michael-Simon-Sobolev inequality for smooth symmetric uniformly\npositive definite (0, 2)-tensor fields on compact submanifolds with or without\nboundary in Riemannian manifolds with nonnegative sectional curvature by the\nAlexandrov-Bakelman-Pucci (ABP) method. It should be a generalization of S.\nBrendle in [2].","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Michael-Simon-Sobolev inequality on manifolds for positive symmetric tensor fields\",\"authors\":\"Yuting Wu, Chengyang Yi, Yu Zheng\",\"doi\":\"arxiv-2409.08011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the Michael-Simon-Sobolev inequality for smooth symmetric uniformly\\npositive definite (0, 2)-tensor fields on compact submanifolds with or without\\nboundary in Riemannian manifolds with nonnegative sectional curvature by the\\nAlexandrov-Bakelman-Pucci (ABP) method. It should be a generalization of S.\\nBrendle in [2].\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用亚历山德罗夫-巴克尔曼-普奇(ABP)方法证明了具有非负截面曲率的黎曼流形中紧凑子流形上光滑对称均匀正定(0,2)张量场的迈克尔-西蒙-索博列夫不等式。这应该是 S.Brendle 在 [2] 中的概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Michael-Simon-Sobolev inequality on manifolds for positive symmetric tensor fields
We prove the Michael-Simon-Sobolev inequality for smooth symmetric uniformly positive definite (0, 2)-tensor fields on compact submanifolds with or without boundary in Riemannian manifolds with nonnegative sectional curvature by the Alexandrov-Bakelman-Pucci (ABP) method. It should be a generalization of S. Brendle in [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信