控制系统对水平轴风力涡轮机叶片气动特性和弹性变形的影响

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Pan He, Jian Xia
{"title":"控制系统对水平轴风力涡轮机叶片气动特性和弹性变形的影响","authors":"Pan He, Jian Xia","doi":"10.1007/s12206-024-0824-3","DOIUrl":null,"url":null,"abstract":"<p>The operation of wind turbines involves a complex interaction between aerodynamics, structural mechanics, and control systems. However, the control system is frequently overlooked. To investigate the impact of the control system on the aerodynamic characteristics and elastic deformations of wind turbines, this paper initially integrates the control system into the blade element momentum theory (BEMT) for calculating aerodynamic forces. Subsequently, the control system is incorporated into fluid-structure interaction (FSI) calculations to assess its influence on the overall performance of the turbine. The control system employs variable speed and pitch control, while the structural dynamics are modeled using the Euler-Bernoulli beam theory. When the control system is integrated with blade element momentum theory to calculate the aerodynamic forces of the wind rotor, it is observed that, below the rated wind speed, a portion of the torque error is transferred to the rotor speed. In contrast, above the rated wind speed, the entire torque error is transferred to the blade pitch angle (BPA). Crucially, when the control system is integrated, the rotor speed and BPA are no longer treated as known parameters. This approach enables the prediction of aerodynamic characteristics of the wind rotor, particularly under complex wind speed profiles. The control system exerts a significant influence on the FSI results, particularly in the range of wind speeds that correspond to larger blade deformations. This work can provide a reference for the calculation of aerodynamic characteristics and FSI of wind turbines under complex wind conditions.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":"70 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of control system on aerodynamic characteristics and elastic deformation of horizontal axis wind turbine blades\",\"authors\":\"Pan He, Jian Xia\",\"doi\":\"10.1007/s12206-024-0824-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The operation of wind turbines involves a complex interaction between aerodynamics, structural mechanics, and control systems. However, the control system is frequently overlooked. To investigate the impact of the control system on the aerodynamic characteristics and elastic deformations of wind turbines, this paper initially integrates the control system into the blade element momentum theory (BEMT) for calculating aerodynamic forces. Subsequently, the control system is incorporated into fluid-structure interaction (FSI) calculations to assess its influence on the overall performance of the turbine. The control system employs variable speed and pitch control, while the structural dynamics are modeled using the Euler-Bernoulli beam theory. When the control system is integrated with blade element momentum theory to calculate the aerodynamic forces of the wind rotor, it is observed that, below the rated wind speed, a portion of the torque error is transferred to the rotor speed. In contrast, above the rated wind speed, the entire torque error is transferred to the blade pitch angle (BPA). Crucially, when the control system is integrated, the rotor speed and BPA are no longer treated as known parameters. This approach enables the prediction of aerodynamic characteristics of the wind rotor, particularly under complex wind speed profiles. The control system exerts a significant influence on the FSI results, particularly in the range of wind speeds that correspond to larger blade deformations. This work can provide a reference for the calculation of aerodynamic characteristics and FSI of wind turbines under complex wind conditions.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0824-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0824-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

风力涡轮机的运行涉及空气动力学、结构力学和控制系统之间复杂的相互作用。然而,控制系统经常被忽视。为了研究控制系统对风力涡轮机空气动力特性和弹性变形的影响,本文首先将控制系统纳入叶片元素动量理论(BEMT),用于计算空气动力。随后,将控制系统纳入流固耦合(FSI)计算,以评估其对风机整体性能的影响。控制系统采用变速和变桨控制,而结构动力学则采用欧拉-伯努利梁理论建模。当将控制系统与叶片元素动量理论相结合来计算风力转子的空气动力时,可以观察到,在额定风速以下,部分扭矩误差会转移到转子速度上。相反,在额定风速以上,全部扭矩误差都会转移到叶片俯仰角(BPA)上。最重要的是,当控制系统集成后,转子速度和 BPA 不再被视为已知参数。这种方法可以预测风力转子的空气动力特性,尤其是在复杂的风速剖面下。控制系统对 FSI 结果有很大影响,尤其是在叶片变形较大的风速范围内。这项工作可为复杂风况下风力涡轮机气动特性和 FSI 的计算提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of control system on aerodynamic characteristics and elastic deformation of horizontal axis wind turbine blades

The operation of wind turbines involves a complex interaction between aerodynamics, structural mechanics, and control systems. However, the control system is frequently overlooked. To investigate the impact of the control system on the aerodynamic characteristics and elastic deformations of wind turbines, this paper initially integrates the control system into the blade element momentum theory (BEMT) for calculating aerodynamic forces. Subsequently, the control system is incorporated into fluid-structure interaction (FSI) calculations to assess its influence on the overall performance of the turbine. The control system employs variable speed and pitch control, while the structural dynamics are modeled using the Euler-Bernoulli beam theory. When the control system is integrated with blade element momentum theory to calculate the aerodynamic forces of the wind rotor, it is observed that, below the rated wind speed, a portion of the torque error is transferred to the rotor speed. In contrast, above the rated wind speed, the entire torque error is transferred to the blade pitch angle (BPA). Crucially, when the control system is integrated, the rotor speed and BPA are no longer treated as known parameters. This approach enables the prediction of aerodynamic characteristics of the wind rotor, particularly under complex wind speed profiles. The control system exerts a significant influence on the FSI results, particularly in the range of wind speeds that correspond to larger blade deformations. This work can provide a reference for the calculation of aerodynamic characteristics and FSI of wind turbines under complex wind conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Science and Technology
Journal of Mechanical Science and Technology 工程技术-工程:机械
CiteScore
2.90
自引率
6.20%
发文量
517
审稿时长
7.7 months
期刊介绍: The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering. Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信