科斯坦蒂诺--吉尔--帕泰奥--米兰量子不变式的 "径向极限猜想 "证明

William Elbæk Mistegård, Yuya Murakami
{"title":"科斯坦蒂诺--吉尔--帕泰奥--米兰量子不变式的 \"径向极限猜想 \"证明","authors":"William Elbæk Mistegård, Yuya Murakami","doi":"arxiv-2408.07423","DOIUrl":null,"url":null,"abstract":"For a negative definite plumbed three-manifold, we give an integral\nrepresentation of the appropriate average of the GPPV invariants of\nGukov--Pei--Putrov--Vafa, which implies that this average admits a resurgent\nasymptotic expansion, the leading term of which is the\nCostantino--Geer--Patureau-Mirand invariant of the three-manifold. This proves\na conjecture of Costantino--Gukov--Putrov.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proof of The Radial Limit Conjecture for Costantino--Geer--Patureau-Mirand Quantum invariants\",\"authors\":\"William Elbæk Mistegård, Yuya Murakami\",\"doi\":\"arxiv-2408.07423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a negative definite plumbed three-manifold, we give an integral\\nrepresentation of the appropriate average of the GPPV invariants of\\nGukov--Pei--Putrov--Vafa, which implies that this average admits a resurgent\\nasymptotic expansion, the leading term of which is the\\nCostantino--Geer--Patureau-Mirand invariant of the three-manifold. This proves\\na conjecture of Costantino--Gukov--Putrov.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于负定垂三芒形,我们给出了Gukov--Pei--Putrov--Vafa的GPPV不变式的适当平均值的积分表示,这意味着该平均值允许一个回升渐近展开,其前导项是三芒形的Costantino--Geer--Patureau-Mirand不变式。这证明了科斯坦蒂诺--古科夫--普特罗夫的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proof of The Radial Limit Conjecture for Costantino--Geer--Patureau-Mirand Quantum invariants
For a negative definite plumbed three-manifold, we give an integral representation of the appropriate average of the GPPV invariants of Gukov--Pei--Putrov--Vafa, which implies that this average admits a resurgent asymptotic expansion, the leading term of which is the Costantino--Geer--Patureau-Mirand invariant of the three-manifold. This proves a conjecture of Costantino--Gukov--Putrov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信