动态冯-诺依曼代数的莫里塔等价性的分类解释

Joeri De Ro
{"title":"动态冯-诺依曼代数的莫里塔等价性的分类解释","authors":"Joeri De Ro","doi":"arxiv-2408.07701","DOIUrl":null,"url":null,"abstract":"$\\DeclareMathOperator{\\G}{\\mathbb{G}}\\DeclareMathOperator{\\Rep}{Rep}\n\\DeclareMathOperator{\\Corr}{Corr}$Let $\\G$ be a locally compact quantum group\nand $(M, \\alpha)$ a $\\G$-$W^*$-algebra. The object of study of this paper is\nthe $W^*$-category $\\Rep^{\\G}(M)$ of normal, unital $\\G$-representations of $M$\non Hilbert spaces endowed with a unitary $\\G$-representation. This category has\na right action of the category $\\Rep(\\G)= \\Rep^{\\G}(\\mathbb{C})$ for which it\nbecomes a right $\\Rep(\\G)$-module $W^*$-category. Given another\n$\\G$-$W^*$-algebra $(N, \\beta)$, we denote the category of normal $*$-functors\n$\\Rep^{\\G}(N)\\to \\Rep^{\\G}(M)$ compatible with the $\\Rep(\\G)$-module structure\nby $\\operatorname{Fun}_{\\Rep(\\G)}(\\Rep^{\\G}(N), \\Rep^{\\G}(M))$ and we denote\nthe category of $\\G$-$M$-$N$-correspondences by\n$\\operatorname{Corr}^{\\G}(M,N)$. We prove that there are canonical functors $P:\n\\Corr^{\\G}(M,N)\\to \\operatorname{Fun}_{\\Rep(\\G)}(\\Rep^{\\G}(N), \\Rep^{\\G}(M))$\nand $Q: \\operatorname{Fun}_{\\Rep(\\G)}(\\Rep^{\\G}(N), \\Rep^{\\G}(M))\\to\n\\operatorname{Corr}^{\\G}(M,N)$ such that $Q \\circ P\\cong \\operatorname{id}.$ We\nuse these functors to show that the $\\G$-dynamical von Neumann algebras $(M,\n\\alpha)$ and $(N, \\beta)$ are equivariantly Morita equivalent if and only if\n$\\Rep^{\\G}(N)$ and $\\Rep^{\\G}(M)$ are equivalent as\n$\\Rep(\\G)$-module-$W^*$-categories. Specializing to the case where $\\G$ is a\ncompact quantum group, we prove that moreover $P\\circ Q \\cong\n\\operatorname{id}$, so that the categories $\\Corr^{\\G}(M,N)$ and\n$\\operatorname{Fun}_{\\Rep(\\G)}(\\Rep^{\\G}(N), \\Rep^{\\G}(M))$ are equivalent.\nThis is an equivariant version of the Eilenberg-Watts theorem for actions of\ncompact quantum groups on von Neumann algebras.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A categorical interpretation of Morita equivalence for dynamical von Neumann algebras\",\"authors\":\"Joeri De Ro\",\"doi\":\"arxiv-2408.07701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\DeclareMathOperator{\\\\G}{\\\\mathbb{G}}\\\\DeclareMathOperator{\\\\Rep}{Rep}\\n\\\\DeclareMathOperator{\\\\Corr}{Corr}$Let $\\\\G$ be a locally compact quantum group\\nand $(M, \\\\alpha)$ a $\\\\G$-$W^*$-algebra. The object of study of this paper is\\nthe $W^*$-category $\\\\Rep^{\\\\G}(M)$ of normal, unital $\\\\G$-representations of $M$\\non Hilbert spaces endowed with a unitary $\\\\G$-representation. This category has\\na right action of the category $\\\\Rep(\\\\G)= \\\\Rep^{\\\\G}(\\\\mathbb{C})$ for which it\\nbecomes a right $\\\\Rep(\\\\G)$-module $W^*$-category. Given another\\n$\\\\G$-$W^*$-algebra $(N, \\\\beta)$, we denote the category of normal $*$-functors\\n$\\\\Rep^{\\\\G}(N)\\\\to \\\\Rep^{\\\\G}(M)$ compatible with the $\\\\Rep(\\\\G)$-module structure\\nby $\\\\operatorname{Fun}_{\\\\Rep(\\\\G)}(\\\\Rep^{\\\\G}(N), \\\\Rep^{\\\\G}(M))$ and we denote\\nthe category of $\\\\G$-$M$-$N$-correspondences by\\n$\\\\operatorname{Corr}^{\\\\G}(M,N)$. We prove that there are canonical functors $P:\\n\\\\Corr^{\\\\G}(M,N)\\\\to \\\\operatorname{Fun}_{\\\\Rep(\\\\G)}(\\\\Rep^{\\\\G}(N), \\\\Rep^{\\\\G}(M))$\\nand $Q: \\\\operatorname{Fun}_{\\\\Rep(\\\\G)}(\\\\Rep^{\\\\G}(N), \\\\Rep^{\\\\G}(M))\\\\to\\n\\\\operatorname{Corr}^{\\\\G}(M,N)$ such that $Q \\\\circ P\\\\cong \\\\operatorname{id}.$ We\\nuse these functors to show that the $\\\\G$-dynamical von Neumann algebras $(M,\\n\\\\alpha)$ and $(N, \\\\beta)$ are equivariantly Morita equivalent if and only if\\n$\\\\Rep^{\\\\G}(N)$ and $\\\\Rep^{\\\\G}(M)$ are equivalent as\\n$\\\\Rep(\\\\G)$-module-$W^*$-categories. Specializing to the case where $\\\\G$ is a\\ncompact quantum group, we prove that moreover $P\\\\circ Q \\\\cong\\n\\\\operatorname{id}$, so that the categories $\\\\Corr^{\\\\G}(M,N)$ and\\n$\\\\operatorname{Fun}_{\\\\Rep(\\\\G)}(\\\\Rep^{\\\\G}(N), \\\\Rep^{\\\\G}(M))$ are equivalent.\\nThis is an equivariant version of the Eilenberg-Watts theorem for actions of\\ncompact quantum groups on von Neumann algebras.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$DeclareMathOperator{\G}\{mathbb{G}}\DeclareMathOperator{/Rep}{Rep}\DeclareMathOperator{Corr}{Corr}$Let $\G$ be a locally compact quantum group and $(M, \alpha)$ a $\G$-$W^*$-algebra.本文的研究对象是$M$在希尔伯特空间上的正态、单元$\G$表示的$W^*$类别$\Rep^{\G}(M)$。这个类别有一个右作用类别 $\Rep(\G)= \Rep^{G}(\mathbb{C})$ ,因此它成为一个右 $\Rep(\G)$ 模块 $W^*$ 类别。给定另一个$G$-$W^*$-代数$(N, \beta)$,我们用$operatorname{Fun}_{Rep(\G)}(\Rep^{G}(N)、\(M))$,我们用$operatorname{Corr}^\{G}(M,N)$来表示$\G$-$M$-$N$对应的范畴。我们将证明,有 Canonical 函数 $P:\Corr^{G}(M,N)\to \operatorname{Fun}_{\Rep(\G)}(\Rep^{G}(N), \Rep^\{G}(M))$ 和 $Q:\operatorname{Fun}_{Rep(\G)}((Rep^{G}(N), (Rep^{G}(M)))\to\operatorname{Corr}^{G}(M,N)$ 这样 $Q \circ P\cong \operatorname{id}.我们使用这些函数来证明,当且仅当$(M,\alpha)$和$(N,\beta)$等价于$Rep^{G}(N)$和$Rep^{G}(M)$等价于$Rep(\G)$-module-$W^*$-categories时,$\G$-动态冯诺伊曼数组$(M,\alpha)$和$(N,\beta)$等价于莫里塔等价。在$\G$是一个紧凑量子群的情况下,我们证明了此外$P\circ Q \cong\operatorname{id}$,所以类别$\Corr^\{G}(M,N)$和$\operatorname{Fun}_{Rep(\G)}(\Rep^{G}(N), \Rep^{G}(M))$是等价的。这是关于冯-诺伊曼代数上紧凑量子群作用的艾伦伯格-瓦茨定理的等变版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A categorical interpretation of Morita equivalence for dynamical von Neumann algebras
$\DeclareMathOperator{\G}{\mathbb{G}}\DeclareMathOperator{\Rep}{Rep} \DeclareMathOperator{\Corr}{Corr}$Let $\G$ be a locally compact quantum group and $(M, \alpha)$ a $\G$-$W^*$-algebra. The object of study of this paper is the $W^*$-category $\Rep^{\G}(M)$ of normal, unital $\G$-representations of $M$ on Hilbert spaces endowed with a unitary $\G$-representation. This category has a right action of the category $\Rep(\G)= \Rep^{\G}(\mathbb{C})$ for which it becomes a right $\Rep(\G)$-module $W^*$-category. Given another $\G$-$W^*$-algebra $(N, \beta)$, we denote the category of normal $*$-functors $\Rep^{\G}(N)\to \Rep^{\G}(M)$ compatible with the $\Rep(\G)$-module structure by $\operatorname{Fun}_{\Rep(\G)}(\Rep^{\G}(N), \Rep^{\G}(M))$ and we denote the category of $\G$-$M$-$N$-correspondences by $\operatorname{Corr}^{\G}(M,N)$. We prove that there are canonical functors $P: \Corr^{\G}(M,N)\to \operatorname{Fun}_{\Rep(\G)}(\Rep^{\G}(N), \Rep^{\G}(M))$ and $Q: \operatorname{Fun}_{\Rep(\G)}(\Rep^{\G}(N), \Rep^{\G}(M))\to \operatorname{Corr}^{\G}(M,N)$ such that $Q \circ P\cong \operatorname{id}.$ We use these functors to show that the $\G$-dynamical von Neumann algebras $(M, \alpha)$ and $(N, \beta)$ are equivariantly Morita equivalent if and only if $\Rep^{\G}(N)$ and $\Rep^{\G}(M)$ are equivalent as $\Rep(\G)$-module-$W^*$-categories. Specializing to the case where $\G$ is a compact quantum group, we prove that moreover $P\circ Q \cong \operatorname{id}$, so that the categories $\Corr^{\G}(M,N)$ and $\operatorname{Fun}_{\Rep(\G)}(\Rep^{\G}(N), \Rep^{\G}(M))$ are equivalent. This is an equivariant version of the Eilenberg-Watts theorem for actions of compact quantum groups on von Neumann algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信