拉德福德霍普夫代数的德林费尔德双的带状元素

Hua Sun, Yuyan Zhang, Libin Li
{"title":"拉德福德霍普夫代数的德林费尔德双的带状元素","authors":"Hua Sun, Yuyan Zhang, Libin Li","doi":"arxiv-2408.09737","DOIUrl":null,"url":null,"abstract":"Let $m$, $n$ be two positive integers, $\\Bbbk$ be an algebraically closed\nfield with char($\\Bbbk)\\nmid mn$. Radford constructed an $mn^{2}$-dimensional\nHopf algebra $R_{mn}(q)$ such that its Jacobson radical is not a Hopf ideal. We\nshow that the Drinfeld double $D(R_{mn}(q))$ of Radford Hopf algebra\n$R_{mn}(q)$ has ribbon elements if and only if $n$ is odd. Moreover, if $m$ is\neven and $n$ is odd, then $D(R_{mn}(q))$ has two ribbon elements, if both $m$\nand $n$ are odd, then $D(R_{mn}(q))$ has only one ribbon element. Finally, we\ncompute explicitly all ribbon elements of $D(R_{mn}(q))$.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ribbon Elements of Drinfeld Double of Radford Hopf Algebra\",\"authors\":\"Hua Sun, Yuyan Zhang, Libin Li\",\"doi\":\"arxiv-2408.09737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $m$, $n$ be two positive integers, $\\\\Bbbk$ be an algebraically closed\\nfield with char($\\\\Bbbk)\\\\nmid mn$. Radford constructed an $mn^{2}$-dimensional\\nHopf algebra $R_{mn}(q)$ such that its Jacobson radical is not a Hopf ideal. We\\nshow that the Drinfeld double $D(R_{mn}(q))$ of Radford Hopf algebra\\n$R_{mn}(q)$ has ribbon elements if and only if $n$ is odd. Moreover, if $m$ is\\neven and $n$ is odd, then $D(R_{mn}(q))$ has two ribbon elements, if both $m$\\nand $n$ are odd, then $D(R_{mn}(q))$ has only one ribbon element. Finally, we\\ncompute explicitly all ribbon elements of $D(R_{mn}(q))$.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $m$,$n$ 是两个正整数,$\Bbbk$ 是一个代数闭域,char($\Bbbk)\nmid mn$。拉德福德构造了一个 $mn^{2}$ 维霍普夫代数 $R_{mn}(q)$,使得它的雅各布森根不是一个霍普夫理想。我们发现,当且仅当 $n$ 为奇数时,拉德福德霍普夫代数$R_{mn}(q)$ 的德林费尔德双元$D(R_{mn}(q))$ 具有带状元素。此外,如果 $m$ 是偶数,而 $n$ 是奇数,那么 $D(R_{mn}(q))$ 有两个带状元素;如果 $m$ 和 $n$ 都是奇数,那么 $D(R_{mn}(q))$ 只有一个带状元素。最后,我们明确计算 $D(R_{mn}(q))$ 的所有带状元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ribbon Elements of Drinfeld Double of Radford Hopf Algebra
Let $m$, $n$ be two positive integers, $\Bbbk$ be an algebraically closed field with char($\Bbbk)\nmid mn$. Radford constructed an $mn^{2}$-dimensional Hopf algebra $R_{mn}(q)$ such that its Jacobson radical is not a Hopf ideal. We show that the Drinfeld double $D(R_{mn}(q))$ of Radford Hopf algebra $R_{mn}(q)$ has ribbon elements if and only if $n$ is odd. Moreover, if $m$ is even and $n$ is odd, then $D(R_{mn}(q))$ has two ribbon elements, if both $m$ and $n$ are odd, then $D(R_{mn}(q))$ has only one ribbon element. Finally, we compute explicitly all ribbon elements of $D(R_{mn}(q))$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信