{"title":"Khovanov-Rozansky 同调、Bott-Samelson 空间和扭曲同调","authors":"Tomas Mejia-Gomez","doi":"arxiv-2409.02940","DOIUrl":null,"url":null,"abstract":"By means of Rasmussen's formulation of Khovanov-Rozansky homology originally\ngiven over $\\mathbb{Q}$ in arXiv:math/0607544, we compare different flavors of\n$\\mathfrak{sl}(n)$ link homology with the link invariants obtained by Kitchloo\nin arXiv:1910.07444 via twistings of Borel equivariant cohomology applied to\nthe symmetry breaking spectra. In particular, we see how these geometric\nconstructions based on Bott-Samelson varieties produce equivariant integral\n$\\mathfrak{sl}(n)$ link homology with either specialized or universal\npotential.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Khovanov-Rozansky homologies, Bott-Samelson spaces and twisted cohomology\",\"authors\":\"Tomas Mejia-Gomez\",\"doi\":\"arxiv-2409.02940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By means of Rasmussen's formulation of Khovanov-Rozansky homology originally\\ngiven over $\\\\mathbb{Q}$ in arXiv:math/0607544, we compare different flavors of\\n$\\\\mathfrak{sl}(n)$ link homology with the link invariants obtained by Kitchloo\\nin arXiv:1910.07444 via twistings of Borel equivariant cohomology applied to\\nthe symmetry breaking spectra. In particular, we see how these geometric\\nconstructions based on Bott-Samelson varieties produce equivariant integral\\n$\\\\mathfrak{sl}(n)$ link homology with either specialized or universal\\npotential.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Khovanov-Rozansky homologies, Bott-Samelson spaces and twisted cohomology
By means of Rasmussen's formulation of Khovanov-Rozansky homology originally
given over $\mathbb{Q}$ in arXiv:math/0607544, we compare different flavors of
$\mathfrak{sl}(n)$ link homology with the link invariants obtained by Kitchloo
in arXiv:1910.07444 via twistings of Borel equivariant cohomology applied to
the symmetry breaking spectra. In particular, we see how these geometric
constructions based on Bott-Samelson varieties produce equivariant integral
$\mathfrak{sl}(n)$ link homology with either specialized or universal
potential.