Khovanov-Rozansky 同调、Bott-Samelson 空间和扭曲同调

Tomas Mejia-Gomez
{"title":"Khovanov-Rozansky 同调、Bott-Samelson 空间和扭曲同调","authors":"Tomas Mejia-Gomez","doi":"arxiv-2409.02940","DOIUrl":null,"url":null,"abstract":"By means of Rasmussen's formulation of Khovanov-Rozansky homology originally\ngiven over $\\mathbb{Q}$ in arXiv:math/0607544, we compare different flavors of\n$\\mathfrak{sl}(n)$ link homology with the link invariants obtained by Kitchloo\nin arXiv:1910.07444 via twistings of Borel equivariant cohomology applied to\nthe symmetry breaking spectra. In particular, we see how these geometric\nconstructions based on Bott-Samelson varieties produce equivariant integral\n$\\mathfrak{sl}(n)$ link homology with either specialized or universal\npotential.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Khovanov-Rozansky homologies, Bott-Samelson spaces and twisted cohomology\",\"authors\":\"Tomas Mejia-Gomez\",\"doi\":\"arxiv-2409.02940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By means of Rasmussen's formulation of Khovanov-Rozansky homology originally\\ngiven over $\\\\mathbb{Q}$ in arXiv:math/0607544, we compare different flavors of\\n$\\\\mathfrak{sl}(n)$ link homology with the link invariants obtained by Kitchloo\\nin arXiv:1910.07444 via twistings of Borel equivariant cohomology applied to\\nthe symmetry breaking spectra. In particular, we see how these geometric\\nconstructions based on Bott-Samelson varieties produce equivariant integral\\n$\\\\mathfrak{sl}(n)$ link homology with either specialized or universal\\npotential.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过 Rasmussen 在 arXiv:math/0607544 中最初给出的关于 $\mathbb{Q}$ 的 Khovanov-Rozansky 同调的表述,我们比较了不同类型的 $\mathfrak{sl}(n)$ link homology 与 Kitchlooin 在 arXiv:1910.07444 中通过应用于对称破缺谱的 Borel 等变同调的扭转得到的 link invariants。特别是,我们将看到这些基于博特-萨缪尔森(Bott-Samelson)变体的几何构造如何产生具有专门或普遍势的等变积分$\mathfrak{sl}(n)$链接同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Khovanov-Rozansky homologies, Bott-Samelson spaces and twisted cohomology
By means of Rasmussen's formulation of Khovanov-Rozansky homology originally given over $\mathbb{Q}$ in arXiv:math/0607544, we compare different flavors of $\mathfrak{sl}(n)$ link homology with the link invariants obtained by Kitchloo in arXiv:1910.07444 via twistings of Borel equivariant cohomology applied to the symmetry breaking spectra. In particular, we see how these geometric constructions based on Bott-Samelson varieties produce equivariant integral $\mathfrak{sl}(n)$ link homology with either specialized or universal potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信