一个奇怪的五顶点模型和环上多物种 ASEP

Atsuo Kuniba, Masato Okado, Travis Scrimshaw
{"title":"一个奇怪的五顶点模型和环上多物种 ASEP","authors":"Atsuo Kuniba, Masato Okado, Travis Scrimshaw","doi":"arxiv-2408.12092","DOIUrl":null,"url":null,"abstract":"We revisit the problem of constructing the stationary states of the\nmultispecies asymmetric simple exclusion process on a one-dimensional periodic\nlattice. Central to our approach is a quantum oscillator weighted five vertex\nmodel which features a strange weight conservation distinct from the\nconventional one. Our results clarify the interrelations among several known\nresults and refine their derivations. For instance, the stationary probability\nderived from the multiline queue construction by Martin (2020) and\nCorteel--Mandelshtam--Williams (2022) is identified with the partition function\nof a three-dimensional system. The matrix product operators by\nProlhac--Evans--Mallick (2009) acquire a natural diagrammatic interpretation as\ncorner transfer matrices (CTM). The origin of their recursive tensor structure,\nas questioned by Aggarwal--Nicoletti--Petrov (2023), is revealed through the\nCTM diagrams. Finally, the derivation of the Zamolodchikov--Faddeev algebra by\nCantini--de Gier--Wheeler (2015) is made intrinsic by elucidating its precise\nconnection to a solution to the Yang--Baxter equation originating from quantum\ngroup representations.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"220 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strange five vertex model and multispecies ASEP on a ring\",\"authors\":\"Atsuo Kuniba, Masato Okado, Travis Scrimshaw\",\"doi\":\"arxiv-2408.12092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the problem of constructing the stationary states of the\\nmultispecies asymmetric simple exclusion process on a one-dimensional periodic\\nlattice. Central to our approach is a quantum oscillator weighted five vertex\\nmodel which features a strange weight conservation distinct from the\\nconventional one. Our results clarify the interrelations among several known\\nresults and refine their derivations. For instance, the stationary probability\\nderived from the multiline queue construction by Martin (2020) and\\nCorteel--Mandelshtam--Williams (2022) is identified with the partition function\\nof a three-dimensional system. The matrix product operators by\\nProlhac--Evans--Mallick (2009) acquire a natural diagrammatic interpretation as\\ncorner transfer matrices (CTM). The origin of their recursive tensor structure,\\nas questioned by Aggarwal--Nicoletti--Petrov (2023), is revealed through the\\nCTM diagrams. Finally, the derivation of the Zamolodchikov--Faddeev algebra by\\nCantini--de Gier--Wheeler (2015) is made intrinsic by elucidating its precise\\nconnection to a solution to the Yang--Baxter equation originating from quantum\\ngroup representations.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"220 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们重新探讨了在一维周期晶格上构建多物种非对称简单排阻过程的静止态问题。我们方法的核心是量子振荡器加权五顶点模型,它具有不同于常规模型的奇特权重守恒。我们的结果澄清了几个已知结果之间的相互关系,并完善了它们的推导。例如,Martin(2020)和Corteel--Mandelshtam--Williams(2022)从多线队列构造中得出的静态概率与三维系统的分割函数相一致。Prolhac--Evans--Mallick(2009)的矩阵乘积算子获得了一种自然的图解解释--矩阵转移矩阵(CTM)。Aggarwal--Nicoletti--Petrov(2023 年)对其递归张量结构提出了质疑,而 CTM 图则揭示了这一结构的起源。最后,Cantini--de Gier--Wheeler(2015)对Zamolodchikov--Faddeev代数的推导,通过阐明它与源于量子组表征的Yang--Baxter方程的解之间的精确联系而变得内在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strange five vertex model and multispecies ASEP on a ring
We revisit the problem of constructing the stationary states of the multispecies asymmetric simple exclusion process on a one-dimensional periodic lattice. Central to our approach is a quantum oscillator weighted five vertex model which features a strange weight conservation distinct from the conventional one. Our results clarify the interrelations among several known results and refine their derivations. For instance, the stationary probability derived from the multiline queue construction by Martin (2020) and Corteel--Mandelshtam--Williams (2022) is identified with the partition function of a three-dimensional system. The matrix product operators by Prolhac--Evans--Mallick (2009) acquire a natural diagrammatic interpretation as corner transfer matrices (CTM). The origin of their recursive tensor structure, as questioned by Aggarwal--Nicoletti--Petrov (2023), is revealed through the CTM diagrams. Finally, the derivation of the Zamolodchikov--Faddeev algebra by Cantini--de Gier--Wheeler (2015) is made intrinsic by elucidating its precise connection to a solution to the Yang--Baxter equation originating from quantum group representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信