环形空间的神秘三性和非凡对称性

Hisham Sati, Alexander A. Voronov
{"title":"环形空间的神秘三性和非凡对称性","authors":"Hisham Sati, Alexander A. Voronov","doi":"arxiv-2408.13337","DOIUrl":null,"url":null,"abstract":"In previous work, we introduced Mysterious Triality, extending the Mysterious\nDuality of Iqbal, Neitzke, and Vafa between physics and algebraic geometry to\ninclude algebraic topology in the form of rational homotopy theory. Starting\nwith the rational Sullivan minimal model of the 4-sphere $S^4$, capturing the\ndynamics of M-theory via Hypothesis H, this progresses to the dimensional\nreduction of M-theory on torus $T^k$, $k \\ge 1$, with its dynamics described\nvia the iterated cyclic loop space $\\mathcal{L}_c^k S^4$ of the 4-sphere. From\nthis, we also extracted data corresponding to the maximal torus/Cartan\nsubalgebra and the Weyl group of the exceptional Lie group/algebra of type\n$E_k$. In this paper, we discover much richer symmetry by extending the data of the\nCartan subalgebra to a maximal parabolic subalgebra $\\mathfrak{p}_k^{k(k)}$ of\nthe split real form $\\mathfrak{e}_{k(k)}$ of the exceptional Lie algebra of\ntype $E_k$ by exhibiting an action, in rational homotopy category, of\n$\\mathfrak{p}_k^{k(k)}$ on the slightly more symmetric than $\\mathcal{L}_c^k\nS^4$ toroidification $\\mathcal{T}^k S^4$. This action universally represents\nsymmetries of the equations of motion of supergravity in the reduction of\nM-theory to $11-k$ dimensions. Along the way, we identify the minimal model of the toroidification\n$\\mathcal{T}^k S^4$, generalizing the results of Vigu\\'{e}-Poirrier, Sullivan,\nand Burghelea, and establish an algebraic toroidification/totalization\nadjunction.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mysterious Triality and the Exceptional Symmetry of Loop Spaces\",\"authors\":\"Hisham Sati, Alexander A. Voronov\",\"doi\":\"arxiv-2408.13337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work, we introduced Mysterious Triality, extending the Mysterious\\nDuality of Iqbal, Neitzke, and Vafa between physics and algebraic geometry to\\ninclude algebraic topology in the form of rational homotopy theory. Starting\\nwith the rational Sullivan minimal model of the 4-sphere $S^4$, capturing the\\ndynamics of M-theory via Hypothesis H, this progresses to the dimensional\\nreduction of M-theory on torus $T^k$, $k \\\\ge 1$, with its dynamics described\\nvia the iterated cyclic loop space $\\\\mathcal{L}_c^k S^4$ of the 4-sphere. From\\nthis, we also extracted data corresponding to the maximal torus/Cartan\\nsubalgebra and the Weyl group of the exceptional Lie group/algebra of type\\n$E_k$. In this paper, we discover much richer symmetry by extending the data of the\\nCartan subalgebra to a maximal parabolic subalgebra $\\\\mathfrak{p}_k^{k(k)}$ of\\nthe split real form $\\\\mathfrak{e}_{k(k)}$ of the exceptional Lie algebra of\\ntype $E_k$ by exhibiting an action, in rational homotopy category, of\\n$\\\\mathfrak{p}_k^{k(k)}$ on the slightly more symmetric than $\\\\mathcal{L}_c^k\\nS^4$ toroidification $\\\\mathcal{T}^k S^4$. This action universally represents\\nsymmetries of the equations of motion of supergravity in the reduction of\\nM-theory to $11-k$ dimensions. Along the way, we identify the minimal model of the toroidification\\n$\\\\mathcal{T}^k S^4$, generalizing the results of Vigu\\\\'{e}-Poirrier, Sullivan,\\nand Burghelea, and establish an algebraic toroidification/totalization\\nadjunction.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在之前的工作中,我们介绍了神秘的三重性,扩展了伊克巴尔、奈茨克和瓦法在物理学和代数几何之间的神秘二重性,以合理同调理论的形式将代数拓扑学包括在内。从4球$S^4$的有理沙利文最小模型开始,通过假说H捕捉M理论的动力学,进而发展到M理论在环$T^k$($k \ge 1$)上的维度还原,其动力学通过4球的迭代循环环空间$\mathcal{L}_c^k S^4$来描述。从中,我们还提取了与最大环/卡坦次代数和例外李群/E_k$型代数的韦尔群相对应的数据。在本文中,我们通过展示一个作用,把卡尔坦子代数的数据扩展到了E_k$类型的特殊李代数的分裂实形式$\mathfrak{e}_{k(k)}$的最大抛物线子代数$\mathfrak{p}_k^{k(k)}$,从而发现了更丰富的对称性、在有理同调范畴中,$mathfrak{p}_k^{k(k)}$ 在比 $\mathcal{L}_c^kS^4$ 略微对称的环化 $\mathcal{T}^k S^4$ 上的作用。这个作用普遍地代表了超引力运动方程在把 M 理论还原到 $11-k$ 维时的对称性。在此过程中,我们确定了环化$\mathcal{T}^k S^4$的最小模型,推广了Vigu\'{e}-Poirrier、Sullivan和Burghelea的结果,并建立了一个代数环化/全化结点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mysterious Triality and the Exceptional Symmetry of Loop Spaces
In previous work, we introduced Mysterious Triality, extending the Mysterious Duality of Iqbal, Neitzke, and Vafa between physics and algebraic geometry to include algebraic topology in the form of rational homotopy theory. Starting with the rational Sullivan minimal model of the 4-sphere $S^4$, capturing the dynamics of M-theory via Hypothesis H, this progresses to the dimensional reduction of M-theory on torus $T^k$, $k \ge 1$, with its dynamics described via the iterated cyclic loop space $\mathcal{L}_c^k S^4$ of the 4-sphere. From this, we also extracted data corresponding to the maximal torus/Cartan subalgebra and the Weyl group of the exceptional Lie group/algebra of type $E_k$. In this paper, we discover much richer symmetry by extending the data of the Cartan subalgebra to a maximal parabolic subalgebra $\mathfrak{p}_k^{k(k)}$ of the split real form $\mathfrak{e}_{k(k)}$ of the exceptional Lie algebra of type $E_k$ by exhibiting an action, in rational homotopy category, of $\mathfrak{p}_k^{k(k)}$ on the slightly more symmetric than $\mathcal{L}_c^k S^4$ toroidification $\mathcal{T}^k S^4$. This action universally represents symmetries of the equations of motion of supergravity in the reduction of M-theory to $11-k$ dimensions. Along the way, we identify the minimal model of the toroidification $\mathcal{T}^k S^4$, generalizing the results of Vigu\'{e}-Poirrier, Sullivan, and Burghelea, and establish an algebraic toroidification/totalization adjunction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信