五维切尔-西蒙斯理论和扭曲 M 理论中的费曼图 R 矩

Meer Ashwinkumar
{"title":"五维切尔-西蒙斯理论和扭曲 M 理论中的费曼图 R 矩","authors":"Meer Ashwinkumar","doi":"arxiv-2408.15732","DOIUrl":null,"url":null,"abstract":"In this work we study the analogues of R-matrices that arise in 5d\nnon-commutative topological-holomorphic Chern-Simons theory, which is known to\ndescribe twisted M-theory. We first study the intersections of line and surface\noperators in 5d Chern-Simons theory, which correspond to M2- and M5-branes,\nrespectively. A Feynman diagram computation of the correlation function of this\nconfiguration furnishes an expression reminiscent of an R-matrix derivable from\n4d Chern-Simons theory. We explain how this object is related to a Miura\noperator that is known to realize (matrix-extended) $W_{\\infty}$-algebras. For\n5d Chern-Simons theory with nonabelian gauge group, we then perform a Feynman\ndiagram computation of coproducts for deformed double current algebras and\nmatrix-extended $W_{\\infty}$-algebras from fusions of M2-branes, M5-branes, and\nM2-M5 intersections.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R-matrices from Feynman Diagrams in 5d Chern-Simons Theory and Twisted M-theory\",\"authors\":\"Meer Ashwinkumar\",\"doi\":\"arxiv-2408.15732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study the analogues of R-matrices that arise in 5d\\nnon-commutative topological-holomorphic Chern-Simons theory, which is known to\\ndescribe twisted M-theory. We first study the intersections of line and surface\\noperators in 5d Chern-Simons theory, which correspond to M2- and M5-branes,\\nrespectively. A Feynman diagram computation of the correlation function of this\\nconfiguration furnishes an expression reminiscent of an R-matrix derivable from\\n4d Chern-Simons theory. We explain how this object is related to a Miura\\noperator that is known to realize (matrix-extended) $W_{\\\\infty}$-algebras. For\\n5d Chern-Simons theory with nonabelian gauge group, we then perform a Feynman\\ndiagram computation of coproducts for deformed double current algebras and\\nmatrix-extended $W_{\\\\infty}$-algebras from fusions of M2-branes, M5-branes, and\\nM2-M5 intersections.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了在 5d 非交换拓扑-多态 Chern-Simons 理论中出现的 R 矩的类似物,该理论被称为描述扭曲的 M 理论。我们首先研究了 5d Chern-Simons 理论中线和面运算符的交点,它们分别对应于 M2 和 M5-branes。通过费曼图计算这种配置的相关函数,我们得到了一个类似于可从 4d Chern-Simons 理论推导出的 R 矩阵的表达式。我们解释了这个对象是如何与已知可以实现(矩阵扩展的)$W_{\infty}$-代数的三浦算子相关联的。对于具有非阿贝尔规规群的5d切尔-西蒙斯理论,我们将从M2-branes、M5-branes和M2-M5交集的融合中,对变形双电流代数和矩阵扩展的$W_{infty}$代数的共乘进行费曼迪图计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
R-matrices from Feynman Diagrams in 5d Chern-Simons Theory and Twisted M-theory
In this work we study the analogues of R-matrices that arise in 5d non-commutative topological-holomorphic Chern-Simons theory, which is known to describe twisted M-theory. We first study the intersections of line and surface operators in 5d Chern-Simons theory, which correspond to M2- and M5-branes, respectively. A Feynman diagram computation of the correlation function of this configuration furnishes an expression reminiscent of an R-matrix derivable from 4d Chern-Simons theory. We explain how this object is related to a Miura operator that is known to realize (matrix-extended) $W_{\infty}$-algebras. For 5d Chern-Simons theory with nonabelian gauge group, we then perform a Feynman diagram computation of coproducts for deformed double current algebras and matrix-extended $W_{\infty}$-algebras from fusions of M2-branes, M5-branes, and M2-M5 intersections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信