自由生成顶点代数的一阶变形

Vladimir Kovalchuk, Fei Qi
{"title":"自由生成顶点代数的一阶变形","authors":"Vladimir Kovalchuk, Fei Qi","doi":"arxiv-2408.16309","DOIUrl":null,"url":null,"abstract":"We solve the problem of how to classify the first-order vertex-algebraic\ndeformations for any grading-restricted vertex algebra $V$ that is freely\ngenerated by homogeneous elements of positive weights. We approach by computing\nthe second cohomology $H^2_{1/2}(V, V)$ constructed by Yi-Zhi Huang. We start\nwith the cocycle on two generators and show that its cohomology class is\ncompletely determined by its singular part. To extend the cocycle to any pair\nof elements in $V$, we take a generating function approach, formulate the\ncocycle equation, and show that all the complementary solutions are\ncoboundaries. Then we use a very general procedure to construct a particular\nsolution. The procedure applies to vertex algebras that are not freely\ngenerated. As a by-product, we show that $H^2_{1/2}(V, V) = H^2_\\infty(V, V)$.\nUsing these results, we explicitly determine the first-order deformations of\nthe universal Virasoro VOA $Vir_c$, universal affine VOA $V^l(\\mathfrak{g})$,\nHeisenberg VOA $V^l(\\mathfrak{h})$, and the universal Zamolodchikov VOA\n$W_3^c$.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-order deformations of freely generated vertex algebras\",\"authors\":\"Vladimir Kovalchuk, Fei Qi\",\"doi\":\"arxiv-2408.16309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve the problem of how to classify the first-order vertex-algebraic\\ndeformations for any grading-restricted vertex algebra $V$ that is freely\\ngenerated by homogeneous elements of positive weights. We approach by computing\\nthe second cohomology $H^2_{1/2}(V, V)$ constructed by Yi-Zhi Huang. We start\\nwith the cocycle on two generators and show that its cohomology class is\\ncompletely determined by its singular part. To extend the cocycle to any pair\\nof elements in $V$, we take a generating function approach, formulate the\\ncocycle equation, and show that all the complementary solutions are\\ncoboundaries. Then we use a very general procedure to construct a particular\\nsolution. The procedure applies to vertex algebras that are not freely\\ngenerated. As a by-product, we show that $H^2_{1/2}(V, V) = H^2_\\\\infty(V, V)$.\\nUsing these results, we explicitly determine the first-order deformations of\\nthe universal Virasoro VOA $Vir_c$, universal affine VOA $V^l(\\\\mathfrak{g})$,\\nHeisenberg VOA $V^l(\\\\mathfrak{h})$, and the universal Zamolodchikov VOA\\n$W_3^c$.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的问题是,如何对任何由正权重的同质元素自由生成的等级受限顶点代数 $V$ 的一阶顶点代数变形进行分类。我们通过计算黄以智构建的第二同调 $H^2_{1/2}(V, V)$ 来进行研究。我们从两个发电机上的循环开始,证明其同调类完全由其奇异部分决定。为了将该循环扩展到 $V$ 中的任意 pairof 元素,我们采用了生成函数的方法,提出了循环方程,并证明了所有互补解都是边界。然后,我们使用一个非常通用的程序来构造一个特定的解。该过程适用于非自由生成的顶点代数。作为副产品,我们证明了 $H^2_{1/2}(V, V) = H^2_\infty(V, V)$ 。利用这些结果,我们明确地确定了通用维拉索罗 VOA $Vir_c$、通用仿射 VOA $V^l(\mathfrak{g})$、海森堡 VOA $V^l(\mathfrak{h})$ 以及通用扎莫洛奇科夫 VOA $W_3^c$ 的一阶变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-order deformations of freely generated vertex algebras
We solve the problem of how to classify the first-order vertex-algebraic deformations for any grading-restricted vertex algebra $V$ that is freely generated by homogeneous elements of positive weights. We approach by computing the second cohomology $H^2_{1/2}(V, V)$ constructed by Yi-Zhi Huang. We start with the cocycle on two generators and show that its cohomology class is completely determined by its singular part. To extend the cocycle to any pair of elements in $V$, we take a generating function approach, formulate the cocycle equation, and show that all the complementary solutions are coboundaries. Then we use a very general procedure to construct a particular solution. The procedure applies to vertex algebras that are not freely generated. As a by-product, we show that $H^2_{1/2}(V, V) = H^2_\infty(V, V)$. Using these results, we explicitly determine the first-order deformations of the universal Virasoro VOA $Vir_c$, universal affine VOA $V^l(\mathfrak{g})$, Heisenberg VOA $V^l(\mathfrak{h})$, and the universal Zamolodchikov VOA $W_3^c$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信