{"title":"SL_3$绺裂模块的神奇抵消和量子弗罗本尼斯","authors":"Vijay Higgins","doi":"arxiv-2409.00351","DOIUrl":null,"url":null,"abstract":"We construct a quantum Frobenius map for the $SL_3$ skein module of any\noriented 3-manifold specialized at a root of unity, and describe the map by way\nof threading certain polynomials along links. The homomorphism is a higher rank\nversion of the Chebyshev-Frobenius homomorphism of Bonahon-Wong. The strategy\nbuilds on a previous construction of the Frobenius map for $SL_3$ skein\nalgebras of punctured surfaces, using the Frobenius map of Parshall-Wang for\nthe quantum group $\\mathcal{O}_q(SL_3).$","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miraculous cancellations and the quantum Frobenius for $SL_3$ skein modules\",\"authors\":\"Vijay Higgins\",\"doi\":\"arxiv-2409.00351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a quantum Frobenius map for the $SL_3$ skein module of any\\noriented 3-manifold specialized at a root of unity, and describe the map by way\\nof threading certain polynomials along links. The homomorphism is a higher rank\\nversion of the Chebyshev-Frobenius homomorphism of Bonahon-Wong. The strategy\\nbuilds on a previous construction of the Frobenius map for $SL_3$ skein\\nalgebras of punctured surfaces, using the Frobenius map of Parshall-Wang for\\nthe quantum group $\\\\mathcal{O}_q(SL_3).$\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miraculous cancellations and the quantum Frobenius for $SL_3$ skein modules
We construct a quantum Frobenius map for the $SL_3$ skein module of any
oriented 3-manifold specialized at a root of unity, and describe the map by way
of threading certain polynomials along links. The homomorphism is a higher rank
version of the Chebyshev-Frobenius homomorphism of Bonahon-Wong. The strategy
builds on a previous construction of the Frobenius map for $SL_3$ skein
algebras of punctured surfaces, using the Frobenius map of Parshall-Wang for
the quantum group $\mathcal{O}_q(SL_3).$