SL_3$绺裂模块的神奇抵消和量子弗罗本尼斯

Vijay Higgins
{"title":"SL_3$绺裂模块的神奇抵消和量子弗罗本尼斯","authors":"Vijay Higgins","doi":"arxiv-2409.00351","DOIUrl":null,"url":null,"abstract":"We construct a quantum Frobenius map for the $SL_3$ skein module of any\noriented 3-manifold specialized at a root of unity, and describe the map by way\nof threading certain polynomials along links. The homomorphism is a higher rank\nversion of the Chebyshev-Frobenius homomorphism of Bonahon-Wong. The strategy\nbuilds on a previous construction of the Frobenius map for $SL_3$ skein\nalgebras of punctured surfaces, using the Frobenius map of Parshall-Wang for\nthe quantum group $\\mathcal{O}_q(SL_3).$","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miraculous cancellations and the quantum Frobenius for $SL_3$ skein modules\",\"authors\":\"Vijay Higgins\",\"doi\":\"arxiv-2409.00351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a quantum Frobenius map for the $SL_3$ skein module of any\\noriented 3-manifold specialized at a root of unity, and describe the map by way\\nof threading certain polynomials along links. The homomorphism is a higher rank\\nversion of the Chebyshev-Frobenius homomorphism of Bonahon-Wong. The strategy\\nbuilds on a previous construction of the Frobenius map for $SL_3$ skein\\nalgebras of punctured surfaces, using the Frobenius map of Parshall-Wang for\\nthe quantum group $\\\\mathcal{O}_q(SL_3).$\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个量子弗罗本尼乌斯图,用于任何取向 3-manifold的$SL_3$绺模块,该模块专一于一个统一根,并通过沿链接穿入某些多项式来描述该图。该同态是 Bonahon-Wong 的 Chebyshev-Frobenius 同态的高阶版本。该策略建立在先前对穿刺面的 $SL_3$ skeinalgebras 的 Frobenius 映射的构造之上,使用了 Parshall-Wang 对量子群 $\mathcal{O}_q(SL_3).$ 的 Frobenius 映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miraculous cancellations and the quantum Frobenius for $SL_3$ skein modules
We construct a quantum Frobenius map for the $SL_3$ skein module of any oriented 3-manifold specialized at a root of unity, and describe the map by way of threading certain polynomials along links. The homomorphism is a higher rank version of the Chebyshev-Frobenius homomorphism of Bonahon-Wong. The strategy builds on a previous construction of the Frobenius map for $SL_3$ skein algebras of punctured surfaces, using the Frobenius map of Parshall-Wang for the quantum group $\mathcal{O}_q(SL_3).$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信