量子编织平面上的复杂结构

Edwin Beggs, Shahn Majid
{"title":"量子编织平面上的复杂结构","authors":"Edwin Beggs, Shahn Majid","doi":"arxiv-2409.05253","DOIUrl":null,"url":null,"abstract":"We construct a quantum Dolbeault double complex $\\oplus_{p,q}\\Omega^{p,q}$ on\nthe quantum plane $\\Bbb C_q^2$. This solves the long-standing problem that the\nstandard differential calculus on the quantum plane is not a $*$-calculus, by\nembedding it as the holomorphic part of a $*$-calculus. We show in general that\nany Nichols-Woronowicz algebra or braided plane $B_+(V)$, where $V$ is an\nobject in an abelian $\\Bbb C$-linear braided bar category of real type is a\nquantum complex space in this sense with a factorisable Dolbeault double\ncomplex. We combine the Chern construction on $\\Omega^{1,0}$ in such a\nDolbeault complex for an algebra $A$ with its conjugate to construct a\ncanonical metric compatible connection on $\\Omega^1$ associated to a class of\nquantum metrics, and apply this to the quantum plane. We also apply this to\nfinite groups $G$ with Cayley graph generators split into two halves related by\ninversion, constructing such a Dolbeault complex $\\Omega(G)$ in this case,\nrecovering the quantum Levi-Civita connection for any edge-symmetric metric on\nthe integer lattice with $\\Omega(\\Bbb Z)$ now viewed as a quantum complex\nstructure. We also show how to build natural quantum metrics on $\\Omega^{1,0}$\nand $\\Omega^{0,1}$ separately where the inner product in the case of the\nquantum plane, in order to descend to $\\otimes_A$, is taken with values in an\n$A$-bimodule.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex structure on quantum-braided planes\",\"authors\":\"Edwin Beggs, Shahn Majid\",\"doi\":\"arxiv-2409.05253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a quantum Dolbeault double complex $\\\\oplus_{p,q}\\\\Omega^{p,q}$ on\\nthe quantum plane $\\\\Bbb C_q^2$. This solves the long-standing problem that the\\nstandard differential calculus on the quantum plane is not a $*$-calculus, by\\nembedding it as the holomorphic part of a $*$-calculus. We show in general that\\nany Nichols-Woronowicz algebra or braided plane $B_+(V)$, where $V$ is an\\nobject in an abelian $\\\\Bbb C$-linear braided bar category of real type is a\\nquantum complex space in this sense with a factorisable Dolbeault double\\ncomplex. We combine the Chern construction on $\\\\Omega^{1,0}$ in such a\\nDolbeault complex for an algebra $A$ with its conjugate to construct a\\ncanonical metric compatible connection on $\\\\Omega^1$ associated to a class of\\nquantum metrics, and apply this to the quantum plane. We also apply this to\\nfinite groups $G$ with Cayley graph generators split into two halves related by\\ninversion, constructing such a Dolbeault complex $\\\\Omega(G)$ in this case,\\nrecovering the quantum Levi-Civita connection for any edge-symmetric metric on\\nthe integer lattice with $\\\\Omega(\\\\Bbb Z)$ now viewed as a quantum complex\\nstructure. We also show how to build natural quantum metrics on $\\\\Omega^{1,0}$\\nand $\\\\Omega^{0,1}$ separately where the inner product in the case of the\\nquantum plane, in order to descend to $\\\\otimes_A$, is taken with values in an\\n$A$-bimodule.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在量子平面 $\Bbb C_q^2$ 上构造了一个量子多尔贝双复数 $\oplus_{p,q}\Omega^{p,q}$ 。这就解决了一个长期存在的问题,即量子平面上的标准微分计算不是一个 $*$ 计算,方法是把它嵌入到一个 $*$ 计算的全形部分中。我们一般地证明,任何尼科尔斯-沃罗诺维奇代数或编织平面 $B_+(V)$,其中 $V$ 是实型的非比$\Bbb C$ 线性编织条范畴中的一个对象,在这个意义上都是具有可因式多尔贝双复的泛复空间。我们结合在这样一个多尔贝复数中对代数 $A$ 的切尔恩构造及其共轭,在 $\Omega^1$ 上构造了一个与一类量子度量相关的泛函度量兼容连接,并将其应用于量子平面。我们还将其应用于具有卡莱图生成器的无限群 $G$,这些生成器通过反转分成两半,在这种情况下构建了这样一个多尔贝复数 $\Omega(G)$,为整数网格上的任何边对称度量恢复了量子列维-奇维塔连接,而 $\Omega(\BbbZ)$现在被视为一个量子复数结构。我们还展示了如何分别在$\Omega^{1,0}$和$\Omega^{0,1}$上建立自然量子度量,其中量子平面上的内积为了下降到$\otimes_A$,是在$A$-双模块中取值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex structure on quantum-braided planes
We construct a quantum Dolbeault double complex $\oplus_{p,q}\Omega^{p,q}$ on the quantum plane $\Bbb C_q^2$. This solves the long-standing problem that the standard differential calculus on the quantum plane is not a $*$-calculus, by embedding it as the holomorphic part of a $*$-calculus. We show in general that any Nichols-Woronowicz algebra or braided plane $B_+(V)$, where $V$ is an object in an abelian $\Bbb C$-linear braided bar category of real type is a quantum complex space in this sense with a factorisable Dolbeault double complex. We combine the Chern construction on $\Omega^{1,0}$ in such a Dolbeault complex for an algebra $A$ with its conjugate to construct a canonical metric compatible connection on $\Omega^1$ associated to a class of quantum metrics, and apply this to the quantum plane. We also apply this to finite groups $G$ with Cayley graph generators split into two halves related by inversion, constructing such a Dolbeault complex $\Omega(G)$ in this case, recovering the quantum Levi-Civita connection for any edge-symmetric metric on the integer lattice with $\Omega(\Bbb Z)$ now viewed as a quantum complex structure. We also show how to build natural quantum metrics on $\Omega^{1,0}$ and $\Omega^{0,1}$ separately where the inner product in the case of the quantum plane, in order to descend to $\otimes_A$, is taken with values in an $A$-bimodule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信