非不可逆性对称解析阿弗莱克-路德维希-卡迪公式和来自边界管代数的纠缠熵

Yichul Choi, Brandon C. Rayhaun, Yunqin Zheng
{"title":"非不可逆性对称解析阿弗莱克-路德维希-卡迪公式和来自边界管代数的纠缠熵","authors":"Yichul Choi, Brandon C. Rayhaun, Yunqin Zheng","doi":"arxiv-2409.02806","DOIUrl":null,"url":null,"abstract":"We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1d\nconformal field theory, which controls the asymptotic density of high energy\nstates on an interval transforming under a given representation of a\nnon-invertible global symmetry. We use this to determine the universal leading\nand sub-leading contributions to the non-invertible symmetry-resolved\nentanglement entropy of a single interval. As a concrete example, we show that\nthe ground state entanglement Hamiltonian for a single interval in the critical\ndouble Ising model enjoys a Kac-Paljutkin $H_8$ Hopf algebra symmetry when the\nboundary conditions at the entanglement cuts are chosen to preserve the product\nof two Kramers-Wannier symmetries, and we present the corresponding\nsymmetry-resolved entanglement entropies. Our analysis utilizes recent\ndevelopments in symmetry topological field theories (SymTFTs).","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-Invertible Symmetry-Resolved Affleck-Ludwig-Cardy Formula and Entanglement Entropy from the Boundary Tube Algebra\",\"authors\":\"Yichul Choi, Brandon C. Rayhaun, Yunqin Zheng\",\"doi\":\"arxiv-2409.02806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1d\\nconformal field theory, which controls the asymptotic density of high energy\\nstates on an interval transforming under a given representation of a\\nnon-invertible global symmetry. We use this to determine the universal leading\\nand sub-leading contributions to the non-invertible symmetry-resolved\\nentanglement entropy of a single interval. As a concrete example, we show that\\nthe ground state entanglement Hamiltonian for a single interval in the critical\\ndouble Ising model enjoys a Kac-Paljutkin $H_8$ Hopf algebra symmetry when the\\nboundary conditions at the entanglement cuts are chosen to preserve the product\\nof two Kramers-Wannier symmetries, and we present the corresponding\\nsymmetry-resolved entanglement entropies. Our analysis utilizes recent\\ndevelopments in symmetry topological field theories (SymTFTs).\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们推导出 1+1dconformal 场论的阿弗莱克-路德维希-卡迪公式的改进版,它控制着在非可逆全局对称性的给定表示下变换的区间上高能态的渐近密度。我们用它来确定对单个区间的非不可逆对称-解析纠缠熵的普遍领先贡献和次领先贡献。作为一个具体的例子,我们证明了临界双伊辛模型中单个区间的基态纠缠哈密顿,当选择纠缠切点处的边界条件以保留两个克拉默-万尼尔对称性的乘积时,它享有 Kac-Paljutkin $H_8$ 霍普夫代数对称性,我们还给出了相应的对称性解析纠缠熵。我们的分析利用了对称拓扑场论(SymTFTs)的最新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non-Invertible Symmetry-Resolved Affleck-Ludwig-Cardy Formula and Entanglement Entropy from the Boundary Tube Algebra
We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1d conformal field theory, which controls the asymptotic density of high energy states on an interval transforming under a given representation of a non-invertible global symmetry. We use this to determine the universal leading and sub-leading contributions to the non-invertible symmetry-resolved entanglement entropy of a single interval. As a concrete example, we show that the ground state entanglement Hamiltonian for a single interval in the critical double Ising model enjoys a Kac-Paljutkin $H_8$ Hopf algebra symmetry when the boundary conditions at the entanglement cuts are chosen to preserve the product of two Kramers-Wannier symmetries, and we present the corresponding symmetry-resolved entanglement entropies. Our analysis utilizes recent developments in symmetry topological field theories (SymTFTs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信