{"title":"蝶形花","authors":"Sam Gunningham, David Jordan, Monica Vazirani","doi":"arxiv-2409.05613","DOIUrl":null,"url":null,"abstract":"We analyze the $G$-skein theory invariants of the 3-torus $T^3$ and the\ntwo-torus $T^2$, for the groups $G = GL_N, SL_N$ and for generic quantum\nparameter. We obtain formulas for the dimension of the skein module of $T^3$,\nand we describe the algebraic structure of the skein category of $T^2$ --\nnamely of the $n$-point relative skein algebras. The case $n=N$ (the Schur-Weyl case) is special in our analysis. We construct\nan isomorphism between the $N$-point relative skein algebra and the double\naffine Hecke algebra at specialized parameters. As a consequence, we prove that\nall tangles in the relative $N$-point skein algebra are in fact equivalent to\nlinear combinations of braids, modulo skein relations. More generally for $n$\nan integer multiple of $N$, we construct a surjective homomorphism from an\nappropriate DAHA to the $n$-point relative skein algebra. In the case $G=SL_2$ corresponding to the Kauffman bracket we give proofs\ndirectly using skein relations. Our analysis of skein categories in higher rank\nhinges instead on the combinatorics of multisegment representations when\nrestricting from DAHA to AHA and nonvanishing properties of parabolic sign\nidempotents upon them.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeins on tori\",\"authors\":\"Sam Gunningham, David Jordan, Monica Vazirani\",\"doi\":\"arxiv-2409.05613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the $G$-skein theory invariants of the 3-torus $T^3$ and the\\ntwo-torus $T^2$, for the groups $G = GL_N, SL_N$ and for generic quantum\\nparameter. We obtain formulas for the dimension of the skein module of $T^3$,\\nand we describe the algebraic structure of the skein category of $T^2$ --\\nnamely of the $n$-point relative skein algebras. The case $n=N$ (the Schur-Weyl case) is special in our analysis. We construct\\nan isomorphism between the $N$-point relative skein algebra and the double\\naffine Hecke algebra at specialized parameters. As a consequence, we prove that\\nall tangles in the relative $N$-point skein algebra are in fact equivalent to\\nlinear combinations of braids, modulo skein relations. More generally for $n$\\nan integer multiple of $N$, we construct a surjective homomorphism from an\\nappropriate DAHA to the $n$-point relative skein algebra. In the case $G=SL_2$ corresponding to the Kauffman bracket we give proofs\\ndirectly using skein relations. Our analysis of skein categories in higher rank\\nhinges instead on the combinatorics of multisegment representations when\\nrestricting from DAHA to AHA and nonvanishing properties of parabolic sign\\nidempotents upon them.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了在 G = GL_N, SL_N$ 群和一般量参数下,3-torus $T^3$ 和 2-torus $T^2$ 的 $G$ 琴键理论不变式。我们得到了 $T^3$ 的矢量模块维数公式,并描述了 $T^2$ 矢量范畴的代数结构--即 $n$ 点相对矢量代数。在我们的分析中,$n=N$ 的情况(舒尔-韦尔情况)比较特殊。我们在专门参数下构建了 $N$ 点相对矢代数与双链赫克代数之间的同构关系。因此,我们证明了相对 $N$ 点辫子代数中的所有缠结实际上等价于辫子的线性组合,模数为辫子关系。更一般地说,对于 $n$ 是 $N$ 的整数倍的情况,我们构建了一个从适当的 DAHA 到 $n$ 点相对辫子代数的推射同态。在与考夫曼括号相对应的$G=SL_2$的情况下,我们直接使用斯琴关系给出了证明。我们对高阶阶乘范畴的分析是基于从 DAHA 限制到 AHA 时多段表示的组合学,以及在它们之上的抛物线符号empotents 的非消失性质。
We analyze the $G$-skein theory invariants of the 3-torus $T^3$ and the
two-torus $T^2$, for the groups $G = GL_N, SL_N$ and for generic quantum
parameter. We obtain formulas for the dimension of the skein module of $T^3$,
and we describe the algebraic structure of the skein category of $T^2$ --
namely of the $n$-point relative skein algebras. The case $n=N$ (the Schur-Weyl case) is special in our analysis. We construct
an isomorphism between the $N$-point relative skein algebra and the double
affine Hecke algebra at specialized parameters. As a consequence, we prove that
all tangles in the relative $N$-point skein algebra are in fact equivalent to
linear combinations of braids, modulo skein relations. More generally for $n$
an integer multiple of $N$, we construct a surjective homomorphism from an
appropriate DAHA to the $n$-point relative skein algebra. In the case $G=SL_2$ corresponding to the Kauffman bracket we give proofs
directly using skein relations. Our analysis of skein categories in higher rank
hinges instead on the combinatorics of multisegment representations when
restricting from DAHA to AHA and nonvanishing properties of parabolic sign
idempotents upon them.