量子擦除信道的 n 次经典容量

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
Matteo Rosati
{"title":"量子擦除信道的 n 次经典容量","authors":"Matteo Rosati","doi":"10.1088/2399-6528/ad6f6b","DOIUrl":null,"url":null,"abstract":"We compute the <italic toggle=\"yes\">n</italic>-shot classical capacity of the quantum erasure channel, providing upper bounds and almost-matching lower bounds for it, the latter achievable via large-minimum-distance classical linear codes for any <italic toggle=\"yes\">n</italic>. The protocols are in full product form, i.e. no entanglement is needed either at the encoder or decoder to attain the capacity, and they explicitly adapt to the transition between different error regimes as the erasure probability increases. Finally, we show that our upper and lower bounds on the capacity are tighter than those obtainable from the general theory of finite-size capacity via generalized divergences.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"74 39 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The n-shot classical capacity of the quantum erasure channel\",\"authors\":\"Matteo Rosati\",\"doi\":\"10.1088/2399-6528/ad6f6b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the <italic toggle=\\\"yes\\\">n</italic>-shot classical capacity of the quantum erasure channel, providing upper bounds and almost-matching lower bounds for it, the latter achievable via large-minimum-distance classical linear codes for any <italic toggle=\\\"yes\\\">n</italic>. The protocols are in full product form, i.e. no entanglement is needed either at the encoder or decoder to attain the capacity, and they explicitly adapt to the transition between different error regimes as the erasure probability increases. Finally, we show that our upper and lower bounds on the capacity are tighter than those obtainable from the general theory of finite-size capacity via generalized divergences.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":\"74 39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad6f6b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad6f6b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了量子擦除信道的 n 次经典容量,为其提供了上界和几乎匹配的下界,后者可通过任意 n 的大最小距离经典线性编码实现。这些协议是全积形式的,即编码器和解码器都不需要纠缠就能达到容量,而且随着擦除概率的增加,它们能明确地适应不同错误机制之间的转换。最后,我们证明了我们的容量上下限比通过广义发散从有限大小容量的一般理论中获得的容量上下限更严格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The n-shot classical capacity of the quantum erasure channel
We compute the n-shot classical capacity of the quantum erasure channel, providing upper bounds and almost-matching lower bounds for it, the latter achievable via large-minimum-distance classical linear codes for any n. The protocols are in full product form, i.e. no entanglement is needed either at the encoder or decoder to attain the capacity, and they explicitly adapt to the transition between different error regimes as the erasure probability increases. Finally, we show that our upper and lower bounds on the capacity are tighter than those obtainable from the general theory of finite-size capacity via generalized divergences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信