Yongqing Zhao, Wenjun Liu, Guangying Lv, Yuepeng Wang
{"title":"带磁场的三维原始方程的连续数据同化","authors":"Yongqing Zhao, Wenjun Liu, Guangying Lv, Yuepeng Wang","doi":"10.3233/asy-241912","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of continuous data assimilation of three dimensional primitive equations with magnetic field in thin domain is studied. We establish the well-posedness of the assimilation system and prove that the H2-strong solution of the assimilation system converges exponentially to the reference solution in the sense of L2 as t→∞. We also study the sensitivity analysis of the assimilation system and prove that a sequence of solutions of the difference quotient equation converge to the unique solution of the formal sensitivity equation.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"2013 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous data assimilation for the three dimensional primitive equations with magnetic field\",\"authors\":\"Yongqing Zhao, Wenjun Liu, Guangying Lv, Yuepeng Wang\",\"doi\":\"10.3233/asy-241912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of continuous data assimilation of three dimensional primitive equations with magnetic field in thin domain is studied. We establish the well-posedness of the assimilation system and prove that the H2-strong solution of the assimilation system converges exponentially to the reference solution in the sense of L2 as t→∞. We also study the sensitivity analysis of the assimilation system and prove that a sequence of solutions of the difference quotient equation converge to the unique solution of the formal sensitivity equation.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-241912\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241912","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Continuous data assimilation for the three dimensional primitive equations with magnetic field
In this paper, the problem of continuous data assimilation of three dimensional primitive equations with magnetic field in thin domain is studied. We establish the well-posedness of the assimilation system and prove that the H2-strong solution of the assimilation system converges exponentially to the reference solution in the sense of L2 as t→∞. We also study the sensitivity analysis of the assimilation system and prove that a sequence of solutions of the difference quotient equation converge to the unique solution of the formal sensitivity equation.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.